263 resultados para Yb3
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Yb:LYSOLYSOLSOYSO5at%Yb:LYSO2.84W1085nm-54.5%1030-1111nm81nmYb:LYSO
Resumo:
We report on the conversion of near-ultraviolet radiation of 250-350 nm into near-infrared emission of 970-1100 nm in Yb3+-doped transparent glass ceramics containing Ba2TiSi2O8 nanocrystals due to the energy transfer from the silicon-oxygen-related defects to Yb3+ ions. Efficient Yb3+ emission (F-2(5/2)-> F-2(7/2)) was detected under the excitation of defects absorption at 314 nm. The occurrence of energy transfer is proven by both steady state and time-resolved emission spectra, respectively, at 15 K. The Yb2O3 concentration dependent energy transfer efficiency has also been evaluated, and the maximum value is 65% for 8 mol % Yb2O3 doped glass ceramic. These materials are promising for the enhancement of photovoltaic conversion efficiency of silicon solar cells via spectra modification.
Resumo:
We demonstrated optical amplification at 1550 nm with a carbon tetrachloride solution of Er3+-Yb3+ codoped NaYF4 nanocubes synthesized with solvo-thermal route. Upon excitation with a 980 nm laser diode, the nanocube solution exhibited strong near-infrared emission by the I-4(13/2) -> I-4(15/2) transition of Er3+ ions due to energy transfer from Yb3+ ions. We obtained the highest optical gain coefficient at 1550 nm of 0.58 cm(-1) for the solution with the pumping power of 200 mW. This colloidal solution might be a promising candidate as a liquid medium for optical amplifier and laser at the optical communication wavelength. (C) 2009 Optical Society of America
Resumo:
Effective diode-pumped cw tunable laser action of a new alloyed crystal Yb:Gd(2(1-)x) Y2xSiO5 (Yb:GYSO, x = 0.5) is demonstrated for the first time. The alloyed crystal retains excellent laser properties of Gd2SiO5 (GSO), as well as the favorable growth properties and the desirable physical of Y2SiO5 (YSO). With a 5-at.% Yb: GYSO sample, we achieved 2.44 W output power at 1081.5 nm and a slope efficiency of 57%. And its laser wavelength could be tuned from 1030nm to 1089 nm. (c) 2006 Optical Society of America.
Resumo:
The frequency upconversion properties of Er3+/Yb3+-codoped heavy metal oxide lead-germanium-bismuth oxide glasses under 975 mn excitation are investigated. Intense green and red emission bands centered at 536, 556 and 672 run, corresponding to the H-2(1/2) --> I-4(15/2), S-4(3/2) --> I-4(15/2) and F-4(9/2) -->I-4(15/2) transitions of Er3+, respectively, were simultaneously observed at room temperature. The influences of PbO on upconversion intensity for the green (536 and 556 nm) and red (672 nm) emissions were compared and discussed. The optimized rare earth doping ratio of Er3+ and Yb3+, is 1:5 for these glasses, which results in the stronger upconversion fluorescence intensities. The dependence of intensities of upconversion emission on excitation power and possible upconversion mechanisms were evaluated and analyzed. The structure of glass has been investigated by means of infrared (IR) spectral analysis. The results indicate that the Er3+/Yb3+-codoped heavy metal oxide lead-germanium-bismuth oxide glasses may be a potential materials for developing upconversion fiber optic devices. (C) 2006 Published by Elsevier Ltd.
Resumo:
The absorption spectra and upconversion fluorescence spectra of Er3+/-Yb3+-codoped natrium-gallium-germanium-bismuth glasses are measured and investigated. The intense green (533 and 549 nm) and red (672 nm) emission bands were simultaneously observed at room temperature. The quadratic dependence of the green and red emission on excitation power indicates that the two-photon absorption processes occur. The influence of Ga2C3 on upconversion intensity is investigated. The intensity of green emissions increases slowly with increasing Ga2O3 content, while the intensity of red emission increases significantly. The possible upconversion mechanisms for these glasses have also been discussed. The maximum phonon energy of the glasses determined based on the infrared (IR) spectral analysis is as low as 740 cm(-1). The studies indicate that Bi2O3-GeO2-Ga2O3-Na2O glasses may be potential materials for developing upconversion optical devices (c) 2006 Published by Elsevier B.V.
Resumo:
Up-conversion luminescence characteristics under 975 nm excitation have been investigated with Tb3+/Tm3+/Yb3+ triply doped tellurite glasses. Here, green (547 nm: D-5(4) --> F-7(4)) and red (660 nm: D-5(4) --> F-7(2)) up-conversion (UC) luminescence originating from Tb3+ is observed strongly, because of the quadratic dependences of emission intensities on the excitation power. Especially, the UC luminescence was intensified violently with the energy transfer from the Tm3+ ions involves in the Tb3+ excitation. To the Tb3+/Tm3+/Yb3+ triply doped glass system, a novel up-conversion mechanism is proposed as follows: the energy of (3)G(4) level (Tm3+) was transferred to D-5(4) (Tb3+) and the 477-nm UC luminescence of Tm3+ was nearly quenched. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
To optimize the performance of longitudinally pumped Yb^(3+):Y2O3 ceramic lasers, cavity parameters such as material length and output coupler transmission at a certain laser output power are calculated numerically using quasi-three-level laser model. The results show great potential of Yb^(3+):Y2O3 ceramics for highly efficient diode-pumped solid-state lasers.
Resumo:
The experiment result of Nd:YVO4 laser pumped by laser diode that was amplified by double-cladding Yb3+ fiber is reported. Stable mode-locking pulses are obtained at repetition rate of 320 MHz and the output power is 15 mW. When laser power is amplified by Yb3+- doped double-cladding fiber amplifier, its power can get to 600 mW. Based on these, experiment of double-frequency is carried out, and green laser with power of 4 mW is obtained. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Ce3+ ions were introduced into the Er3+/Yb3+ -codoped TeO2-WO3-ZnO glasses, and the effect of Ce3+ on the emission properties at 1.5 mu m band and the upconversion luminescence of Er3+ in the glasses was investigated. With the increasing of Ce3+ concentration, the emission intensity of Er3+ at 1.5 mu m band increases firstly, and then decreases. The optimal doping concentration of Ce3+ is about 2.07 x 10(20)/cm(3). As for the Er3+ emission at 1.5-mu m band, the fluorescence lifetime decreases a little from 3.4ms to 3.0ms, while the full width at half maximum (FWHM) hardly changes with the increase of Cc 3+ concentration. Due to the effective cross relaxation between Ce3+ and Er3+ : Er3+ (I-4(11/2)) + Ce3+ (F-2(5/2)) -> Er3+ (I-4(13/2)) + Ce3+ (F-2(7/2)), the upconversion emission intensity of Er3+ is reduced greatly. But when Ce3+ -doping concentration is too high, the other cross relaxation between Ce3+ and Er3+ : Er3+ (4I(13/2)) + Ce3+ (F-2(5/2)) -> Er3+ (I-4(15/2)) + Ce3+ (F-2(7/2)) happens, which depopulates the I-4(13/2) level of Er3+ and results in the decrease of the emission intensity and fluorescence lifetime of Er3+ at 1.5 mu m band.
Resumo:
For the Er3+/Yb3+ codoped fluorophosphate glasses, Judd-Ofelt theory is used to analyse the influence of YbF3 as not a sensitizer but an average component on the spectroscopic properties around 1530 nm emission. The double roles of Yb3+, as a sensitizer and as an average component, are discussed. It is found that Yb3+ as an average component contributes to the increase of fluorescence lifetime, and Yb3+ as a sensitizer has the best sensitization when its concentration is 2.4 mol%.