125 resultados para Yahoo! Group
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
For solving complex flow field with multi-scale structure higher order accurate schemes are preferred. Among high order schemes the compact schemes have higher resolving efficiency. When the compact and upwind compact schemes are used to solve aerodynamic problems there are numerical oscillations near the shocks. The reason of oscillation production is because of non-uniform group velocity of wave packets in numerical solutions. For improvement of resolution of the shock a parameter function is introduced in compact scheme to control the group velocity. The newly developed method is simple. It has higher accuracy and less stencil of grid points.
Resumo:
For simulating multi-scale complex flow fields like turbulent flows, the high order accurate schemes are preferred. In this paper, a scheme construction with numerical flux residual correction (NFRC) is presented. Any order accurate difference approximation can be obtained with the NFRC. To improve the resolution of the shock, the constructed schemes are modified with group velocity control (GVC) and weighted group velocity control (WGVC). The method of scheme construction is simple, and it is used to solve practical problems.
Resumo:
To overcome the difficulty in the DNS of compressible turbulence at high turbulent Mach number, a new difference scheme called GVC8 is developed. We have succeeded in the direct numerical simulation of decaying compressible turbulence up to turbulent Mach number 0.95. The statistical quantities thus obtained at lower turbulent Mach number agree well with those from previous authors with the same initial conditions, but they are limited to simulate at lower turbulent Mach numbers due to the so-called start-up problem. The energy spectrum and coherent structure of compressible turbulent flow are analysed. The scaling law of compressible turbulence is studied. The computed results indicate that the extended self-similarity holds in decaying compressible turbulence despite the occurrence of shocklets, and compressibility has little effects on relative scaling exponents when turbulent Mach number is not very high.
Resumo:
Adopting Yoshizawa's two-scale expansion technique, the fluctuating field is expanded around the isotropic field. The renormalization group method is applied for calculating the covariance of the fluctuating field at the lower order expansion. A nonlinear Reynolds stress model is derived and the turbulent constants inside are evaluated analytically. Compared with the two-scale direct interaction approximation analysis for turbulent shear flows proposed by Yoshizawa, the calculation is much more simple. The analytical model presented here is close to the Speziale model, which is widely applied in the numerical simulations for the complex turbulent flows.
Resumo:
For a n-dimensional vector fields preserving some n-form, the following conclusion is reached by the method of Lie group. That is, if it admits an one-parameter, n-form preserving symmetry group, a transformation independent of the vector field is constructed explicitly, which can reduce not only dimesion of the vector field by one, but also make the reduced vector field preserve the corresponding ( n - 1)-form. In partic ular, while n = 3, an important result can be directly got which is given by Me,ie and Wiggins in 1994.
Resumo:
The electronic spectra of one-dimensional nanostructured systems are calculated within the pure hopping model on the tight-binding Hamiltonian. By means of the renormalization group Green's function method, the dependence of the density of states on the distributions of nanoscaled grains and the changes of values of hopping integrals in nanostructured systems are studied. It is found that the frequency shifts are dependent rather on the changes of the hopping integrals at nanoscaled grains than the distribution of nanoscaled grains.
Resumo:
The spray of emulsified fuel, composed of diesel fuel, water and methanol can make micro-explosion under high temperature conditions, and the viscosity and the atomization characteristics of emulsion have significant effects on the micro- explosion of emulsions. To clarify the combustion mechanism of water-in-oil emulsion sprays, combustion bomb experiments were carried out, and the droplet group micro- explosions in W/O fuel emulsion sprays in a high-pressure, high-temperature bomb were observed clearly by a multi-pulsed, off-axis, image-plane ruby laser holocamera and continuously by a high-speed CCD camera.The viscosity and atomization characteristics of emulsions were also studied experimentally. The experimental results show that the higher concentration of the aqueous phase (water-methanol) (<50%) increases the viscosity of the emulsions, especially for higher agent concentration, and higher aqueous phase concentration and higher viscosity results in lager Sauter Mean Diameter (SMD). The experiment results also show that the different kinds of emulsifying agents, with different Hydrophile-Lipophile Balance (HLB) values, have significant influence on the viscosity of the emulsions.
Resumo:
The group velocity of the probe light pulse (GVPLP) propagating through an open Lambda-type atomic system with a spontaneously generated coherence is investigated when the weak probe and strong driving light fields have different frequencies. It is found that adjusting the detuning or Rabi frequency of the probe light field can realize switching of the GVPLP from subluminal to superluminal. Changing the relative phase between the probe and driving light. elds or atomic exit and injection rates can lead to GVPLP varying in a wider range, but cannot induce transformation of the property of the GVPLP. The absolute value of the GVPLP always increases with Rabi frequency of the driving light field increasing. For subluminal and superluminal propagation, the system always exhibits the probe absorption, and GVPLP is mainly determined by the slope of the steep dispersion.
Resumo:
The group velocities of the probe laser field are studied in a A-type system where one lower state has two fold levels coupled by a control field. It is found that the interaction of double dark states leads to controllable group velocity of the probe field in this system. It can be easily realized, due to the interacting double dark resonances, that one of the group velocities at transparency positions is much slower than the other by tuning the control field to be off resonance. In particular, when the control field is on resonance. we can obtain two equal slow group velocities with a broader EIT width, which provides potential applications in quantum storage and retrieval of light. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The properties of noncollinear optical parametric amplification (NOPA) based on quasi-phase matching of periodically poled crystals are investigated, under the condition that the group velocity matching (GVM) of the signal and idler pulses is satisfied. Our study focuses on the dependence of the gain spectrum upon the noncollinear angle, crystal temperature, and crystal angle with periodically poled KTiOPO4 (PPKTP), periodically poled LiNbO3 (PPLN), and periodically poled LiTaO3 (PPLT), and the NOPA gain properties of the three crystals are compared. Broad gain bandwidth exists above 85 nm at a signal wavelength of 800 nm with a 532 nm pump pulse, with proper noncollinear angle and grating period at a fixed temperature for GVM. Deviation from the group-velocity-matched noncollinear angle can be compensated by accurately tuning the crystal angle or temperature with a fixed grating period for phase matching. Moreover, there is a large capability of crystal angle tuning.
Resumo:
We investigate the group velocity of the probe light pulse in an open V-type system with spontaneously generated coherence. We find that, not only varying the relative phase between the probe and driving pulses can but varying the atomic exit rate or incoherent pumping rate also can manipulate dramatically the group velocity, even make the pulse propagation switching from subluminal to superluminal; the subliminal propagation can be companied with gain or absorption, but the superluminal propagation is always companied with absorption. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
The effects of the relative phase between two laser beams on the propagation of a weak electromagnetic pulse are investigated in a V-type system with spontaneously generated coherence (SGC). Due to the relative phase, the subluminal and superluminal group velocity can be unified. Meanwhile, SGC can be regarded as a knob to manipulate light propagation between subluminal and superluminal.
Resumo:
With the external field coupling the two upper levels, we investigate the light pulse propagation properties with weak probe field in a V-type system. Due to the external upper level (UL) coupling field, the dispersion of the system has been influenced by the relative phase. It is shown that the UL field and the relative phase can be regarded as switches to manipulate light propagation between subluminal and superluminal. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The properties of a five-level K-type system are investigated. With the controlling fields, the properties of the dispersion and absorption of the system are changed greatly. The system can produce anomalous dispersion regions with absorption and normal dispersion regions with absorption or transparency. Furthermore, the group velocity can be varied from subluminal to superluminal by varying the intensity of the controlling field and the probe detunings in principle. (C) 2008 Elsevier B.V. All rights reserved.