130 resultados para YIELD STRENGTH

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple derivation based on continuum mechanics is given, which shows the surface stress is critical for yield strength at ultra-small scales. Molecular dynamics (MD) simulations with modified embedded atom method (MEAM) are employed to investigate the mechanical behaviors of single-crystalline metal nanowires under tensile loading. The calculated yield strengths increasing with the decrease of the cross-sectional area of the nanowires are in accordance with the theoretical prediction. Reorientation induced by stacking faults is observed at the nanowire edge. In addition. the mechanism of yielding is discussed in details based on the snapshots of defects evolution. The nanowires in different crystallographic orientations behave differently in stretching deformation. This study on the plastic properties of metal nanowires will be helpful to further understanding of the mechanical properties of nanomaterials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanometer-scale elastic moduli and yield strengths of polycarbonate (PC) and polystyrene (PS) thin films were measured with atomic force microscopy (AFM) indentation measurements. By analysis of the AFM indentation force curves with the method by Oliver and Pharr, Young's moduli of PC and PS thin films could be obtained as 2.2 +/- 0.1 and 2.6 +/- 0.1 GPa, respectively, which agree well with the literature values. By fitting Johnson's conical spherical cavity model to the measured plastic zone sizes, we obtained yield strengths of 141.2 MPa for PC thin films and 178.7 MPa for PS thin films, which are similar to2 times the values expected from the literature. We propose that it is due to the AFM indentation being asymmetric, which was not accounted for in Johnson's model. A correction factor, epsilon, of similar to0.72 was introduced to rescale the plastic zone size, whereupon good agreement between theory and experiment was achieved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a model in this paper for predicting the inverse Hall-Petch phenomenon in nanocrystalline (NC) materials which are assumed to consist of two phases: grain phase of spherical or spheroidal shapes and grain boundary phase. The deformation of the grain phase has an elasto-viscoplastic behavior, which includes dislocation glide mechanism, Coble creep and Nabarro-Herring creep. However the deformation of grain boundary phase is assumed to be the mechanism of grain boundary diffusion. A Hill self-consistent method is used to describe the behavior of nanocrystalline pure copper subjected to uniaxial tension. Finally, the effects of grain size and its distribution, grain shape and strain rate on the yield strength and stress-strain curve of the pure copper are investigated. The obtained results are compared with relevant experimental data in the literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microstructure and mechanical properties of peak-aged Mg-4.5Zn-xGd (x=0, 0.5, 1.0 and 1.5 wt.%) alloys have been investigated. The results showed that the grain size of the alloys was refined gradually with increasing Gd. Mg5Gd and Mg3Gd2Zn3 phases were found in the Gd-containing alloys. The strengths were greatly improved with Gd additions, and the highest strength level was obtained in the Mg-4.5Zn-1.5Gd alloy, in which the ultimate tensile strength and yield strength were 231 MPa and 113 MPa, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phenomena of the 'piling up' and 'sinking-in' of surface profiles in conical indentation in elastic-plastic solids with work hardening are studied using dimensional and finite-element analysis. The degree of sinking in and piling up is shown to depend on the ratio of the initial yield strength Y to Young's modulus E and on the work-hardening exponent n. The widely used procedure proposed by Oliver and Pharr for estimating contact depth is then evaluated systematically. By comparing the contact depth obtained directly from finite-element calculations with that obtained from the initial unloading slope using the Oliver-Pharr procedure, the applicability of the procedure is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cu47.5Zr47.5Al5 was prepared by arc melting and solidified in situ by suction casting into 2-5-mm-diameter rods under various cooling rates (200-2000 K/s). The microstructure was investigated along the length of the rods by electron microscopy, differential scanning calorimetry and mechanical properties were investigated under compression. The microstructure of differently prepared specimens consists of macroscopic spherical shape chemically inhomogeneous regions together with a low volume fraction of randomly distributed CuZr B2 phase embedded in a 2-7 nm size clustered "glassy-martensite" matrix. The as-cast specimens show high yield strength (1721 MPa), pronounced work-hardening behavior up to 2116 MPa and large fracture strain up to 12.1-15.1%. The fracture strain decreases with increasing casting diameter. The presence of chemical inhomogenities and nanoscale "glassy-martensite" features are beneficial for improving the inherent ductility of the metallic glass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of indenter tip rounding on the shape of indentation loading curves have been analyzed using dimensional and finite element analysis for conical indentation in elastic-perfectly plastic solids. A method for obtaining mechanical properties from indentation loading curves is then proposed. The validity of this method is examined using finite element analysis. Finally, the method is used to determine the yield strength of several materials for which the indentation loading curves are available in the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of thermal exposure on the tensile properties of aluminium borate whisker reinforced 6061 aluminium alloy composite was studied. The interfacial reaction was investigated by TEM and the mechanical properties were studied using tensile tests. The results indicated that the interfacial reaction had an influence on the mechanical properties of the composite, so that the maxima of Young’s modulus and ultimate tensile strength of the composite after exposure at 500?C for 10 h were obtained for the optimum degree of interfacial reaction. The yield strength,however, was not only affected by the interfacial state but also by many other factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using dimensional analysis and finite-element calculations we determine the functional form of indentation loading curves for a rigid conical indenter indenting into elastic-perfectly plastic solids. The new results are compared with the existing theories of indentation using conical indenters, including the slip-line theory for rigid-plastic solids, Sneddon's result for elastic solids, and Johnson's model for elastic-perfectly plastic solids. In the limit of small ratio of yield strength (Y) to Young's modulus (E), both the new results and Johnson's model approach that predicted by slip-line theory for rigid-plastic solids. In the limit of large Y/E, the new results agree with that for elastic solids. For a wide range of Y/E, some difference is found between Johnson's model-and the present result. This study also demonstrates the possibilities and limitations of using indentation loading curves to extract fundamental mechanical properties of solids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using dimensional analysis and finite element calculations, we derive simple scaling relationships for loading and unloading curve, contact depth, and hardness. The relationship between hardness and the basic mechanical properties of solids, such as Young's modulus, initial yield strength, and work-hardening exponent, is then obtained. The conditions for 'piling-up' and 'sinking-in' of surface profiles during indentation are determined. A method for estimating contact depth from initial unloading slope is examined. The work done during indentation is also studied. A relationship between the ratio of hardness to elastic modulus and the ratio of irreversible work to total work is discovered. This relationship offers a new method for obtaining hardness and elastic modulus. Finally, a scaling theory for indentation in power-law creep solids using self-similar indenters is developed. A connection between creep and 'indentation size effect' is established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atomistic simulations are used to investigate the mechanical behavior of metal nanowire with fivefold twinned structure. The twinned nanowires were reported in recent experiments [B. Wu et al., Nano Lett. 6, 468 (2006)]. In the present paper, we find that the yield strength of the fivefold twinned Cu nanowire is 1.3 GPa higher than that of the face-centered-cubic (fcc) < 110 > single crystalline Cu nanowire without fivefold twinned structure, and the microstructure-hardened mechanism is primarily due to the twinned boundaries which act as the barriers for the dislocation emission and propagation. However, we also find that the fivefold twinned Cu nanowire has lower ductility than that of fcc < 110 > single crystalline Cu nanowire without the twinned structure, and this is mainly attributed to the scarcity and low mobility of dislocations. In addition, in our simulations the effect of preexisting stacking faults and dislocations on strength of the fivefold twinned nanowires is investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dimensional and finite element analyses were used to analyze the relationship between the mechanical properties and instrumented indentation response of materials. Results revealed the existence of a functional dependence of (engineering yield strength sigma(E,y) + engineering tensile strength sigma(E,b))/Oliver & Pharr hardness on the ratio of reversible elastic work to total work obtained from an indentation test. The relationship links up the Oliver & Pharr hardness with the material strengths, although the Oliver & Pharr hardness may deviate from the true hardness when sinking in or piling up occurs. The functional relationship can further be used to estimate the SUM sigma(E,y) + sigma(E,b) according to the data of an instrumented indentation test. The sigma(E,y) + sigma(E,b) value better reflects the strength of a material compared to the hardness value alone. The method was shown to be effective when applied to aluminum alloys. The relationship can further be used to estimate the fatigue limits, which are usually obtained from macroscopic fatigue tests in different modes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are simulated. Two partial edge dislocations are introduced into workpiece Si, it is found that the motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocations is far below the yield strength of Si. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microtwins are frequently observed in face-centered-cubic (fcc) metal nanowires with low stacking fault energy. The authors have previously reported that the tensile Yield strength of copper nanowires can be increased by, the presence of twin boundaries. lit this work, simulations are carried out under both uniaxial tension and compression loading, to demonstrate that the strengthening effects are inherent to these nanowires, independent of the loading condition (tensile/compressive). It appears that the strengthening mechanism of the twinned nanowires can be attributed to stress redistribution due to the change of crystallographic orientations across twin boundaries, which requires larger external stress to make them Yield as compared to the twin-free wire.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are calculated. A screw dislocation is introduced into workpiece Si. It is found that motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocation is far below the yield strength of Si.