102 resultados para Wu family

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The BRUNOL/CELF family of RNA-binding proteins plays important roles in post-transcriptional regulation and has been implicated in several developmental processes. In this study, we describe the cloning and expression patterns of five Brunol genes in Xenopus laevis. Among them, only Brunol2 is maternally expressed and the zygotic expression of the other four Brunol genes starts at different developmental stages. During Xenopus development, Brunol1, 4-5 are exclusively expressed in the nervous system including domains in the brain, spinal cord, optic and otic vesicles. Brunol2 and 3 are expressed in both the somatic mesoderm and the nervous system. Brunol2 is also extensively expressed in the lens. In transfected Hela cells, BRUNOL1, 2 and 3 proteins are localized in both the cytoplasm and the nucleus, while BRUNOL4 and 5 are only present in the cytoplasm, indicating their different functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trypsin-like serine protease (Tryp_SPc) family is ubiquitous in animals and plays diverse roles, especially in the digestive system, in different phyla. In the mosquito, some Tryp_SPc proteases make important contributions to the digestion of the bloo

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are 47 genera and 161 species of Gramineae except the cultivated species in the area of the Karakorum and Kunlun Mountains. The results of research on the distribution of the genera and species of Gramineae in the Karakorum and Kunlun Mountains show that (1) The Gramineae mainly contains elements of North Temperate, rich Old Word Temperate and other Temperate. It is obvious that the floristic nature of Gramineae in the Karakorum and Kunlun Mountains is the North Temperate; (2) All Pantropic genera can stretch to the Temperate Zone in this region, which all parts of the Pantropic type are the Temperate nature to a certain degree. For example, Erianthus ravennae from mediterranean to the Karakorum and Kunlun Mountains through the Central Asia; (3) As most genera of Grasses are the type of Temperate and the Frigid Zone, they have distinct floristic characteristics of mountainous and plateau flora such as Orinus, Alopecurus, Elymus, Trisetum, Littledalea, Elytrigia, Stephanachne and Paracolpodium etc. All of these indicate adaptive phenomenon of alpine specialization and cold-xerophilization on Grasses in this area; (4) Endemic genus of Gramineae is absent due to its nature and history and the endemic species are also rare in the Karakorum and Kunlun Mountains. Most of the genera with one or fewer species have originated from its relative and widespread genera, such as Ptilagrostis from Stipa, Timouria from Achnatherum, and so on; (5) Flora of the Karakorum and Kunlun Mountains is most closely related to the flora of Tibet, and is also extensively to its adjacent areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using AKNS [Phys. Rev. Lett. 31 (1973) 125] system and introducing the wave function, a family of interesting exact solutions of the sine-Gordon equation are constructed. These solutions seem to be some soliton, kink, and anti-kink ones respectively for the different choice of the spectrum, whereas due to the interaction between two traveling-waves they have some properties different from usual soliton, kink, and anti-kink solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a basic tool of modern biology, sequence alignment can provide us useful information in fold, function, and active site of protein. For many cases, the increased quality of sequence alignment means a better performance. The motivation of present work is to increase ability of the existing scoring scheme/algorithm by considering residue–residue correlations better. Based on a coarse-grained approach, the hydrophobic force between each pair of residues is written out from protein sequence. It results in the construction of an intramolecular hydrophobic force network that describes the whole residue–residue interactions of each protein molecule, and characterizes protein's biological properties in the hydrophobic aspect. A former work has suggested that such network can characterize the top weighted feature regarding hydrophobicity. Moreover, for each homologous protein of a family, the corresponding network shares some common and representative family characters that eventually govern the conservation of biological properties during protein evolution. In present work, we score such family representative characters of a protein by the deviation of its intramolecular hydrophobic force network from that of background. Such score can assist the existing scoring schemes/algorithms, and boost up the ability of multiple sequences alignment, e.g. achieving a prominent increase (50%) in searching the structurally alike residue segments at a low identity level. As the theoretical basis is different, the present scheme can assist most existing algorithms, and improve their efficiency remarkably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanics property is the foundation of many characters of proteins. Based on intramolecular hydrophobic force network, the representative family character underlying a protein’s mechanics property is described by a simple two-letter scheme. The tendency of a sequence to become a member of a protein family is scored according to this mathematical representation. Remote homologs of the WW-domain family could be easily designed using such a mechanistic signature of protein homology. Experimental validation showed that nearly all artificial homologs have the representative folding and bioactivity of their assigned family. Since the molecular mechanics property is the only consideration in this study, the results indicate its possible role in the generation of new members of a protein family during evolution.