4 resultados para Weakly Supervised Learning

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Gaussian process latent variable model (GP-LVM) has been identified to be an effective probabilistic approach for dimensionality reduction because it can obtain a low-dimensional manifold of a data set in an unsupervised fashion. Consequently, the GP-LVM is insufficient for supervised learning tasks (e. g., classification and regression) because it ignores the class label information for dimensionality reduction. In this paper, a supervised GP-LVM is developed for supervised learning tasks, and the maximum a posteriori algorithm is introduced to estimate positions of all samples in the latent variable space. We present experimental evidences suggesting that the supervised GP-LVM is able to use the class label information effectively, and thus, it outperforms the GP-LVM and the discriminative extension of the GP-LVM consistently. The comparison with some supervised classification methods, such as Gaussian process classification and support vector machines, is also given to illustrate the advantage of the proposed method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A visual pattern recognition network and its training algorithm are proposed. The network constructed of a one-layer morphology network and a two-layer modified Hamming net. This visual network can implement invariant pattern recognition with respect to image translation and size projection. After supervised learning takes place, the visual network extracts image features and classifies patterns much the same as living beings do. Moreover we set up its optoelectronic architecture for real-time pattern recognition. (C) 1996 Optical Society of America

Relevância:

80.00% 80.00%

Publicador:

Resumo:

随着P2P技术的发展,网络上充满了大量的P2P应用。协议加密技术的发展,使得P2P应用的识别和管理变得非常困难。描述了如何运用半监督的机器学习理论,根据传输层的特征,用聚类算法训练数据并建立一个高效的在线协议识别器,用于在内核协议层对协议特别是P2P协议进行识别,并对BitComet和Emule进行了实验,得到了很高的识别准确率(80%)。研究并解决了将选取好的特征用于聚类并高效地实现最后的协议识别器。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

虽然基于行为控制自主机器人具有较高的鲁棒性,但其对于动态环境缺乏必要的自适应能力,强化学习方法使机器人可以通过学习来完成任务,而无需设计者完全预先规定机器人的所有动作,它是将动态规划和监督学习结合的基础上发展起来的一种新颖的学习方法,它通过机器人与环境的试错交互,利用来自成功和失败经验的奖励和惩罚信号不断改进机器人的性能,从而达到目标,并容许滞后评价,由于其解决复杂问题的突出能力,强化学习已成为一种非常有前途的机器人学习方法,本文系统论述了强化学习方法在自主机器人中的研究现状,指出了存在的问题,分析了几种问题解决途径,展望了未来发展趋势。