52 resultados para Wave function
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A method for optimizing tried wave functions in quantum Monte Carlo method has been found and used to calculate the energies of molecules, such as H-2, Li-2, H-3+, H-3 and H-4. Good results were obtained.
Resumo:
Using the first-principles band-structure method and the special quasirandom structures approach, the authors have investigated the band structure of random AlxInyGa1-x-yN quaternary alloys. They show that the wave functions of the band edge states are more localized on the InN sites. Consequently, the photoluminescence transition intensity in the alloy is higher than that in GaN. The valence band maximum state of the quaternary alloy is also higher than GaN with the same band gap, indicating that the alloy can be doped more easily as p-type. (c) 2007 American Institute of Physics.
Resumo:
The time evolution of the ground state wave function of an exciton in an ideal bilayer system is investigated within the framework of the effective-mass approximation. All of the moduli squared of the ground state wave functions evolve with time as cosine functions after an in-plane electric field is applied to the bilayer system. The variation amplitude and period of the modulus squared of the ground state wave function increase with the in-plane electric field F-r for a fixed in-plane relative coordinate r and fixed separation d between the electron and hole layers. Moreover, the variation amplitude and period of the modulus squared of the ground state wave function increase with the separation d for a fixed r and fixed in-plane electric field. Additionally, the modulus squared of the ground state wave function decreases as r increases at a given time t for fixed values of d and F-r. (c) 2007 American Institute of Physics.
Resumo:
Quantization of RLC circuit is given and described by a double-wave function. A comparison between classical limit result and those of classical theory is made.
Resumo:
In this paper, the detection wavelength and the electron-hole wave function overlap of InAs/IrxGa1-xSb type II superlattice photodetectors are numerically calculated by using the envelope function and the transfer matrix methods. The band offset is dealt with by employing the model solid theory, which already takes into account the lattice mismatch between InAs and InxGa1-xSb layers. Firstly, the detection wavelength and the wave function overlap are investigated in dependence on the InAs and InxGa1-xSb layer thicknesses, the In mole fraction, and the periodic number. The results indicate that the detection wavelength increases with increasing In mole fraction, InAs and InxGa1-xSb layer thicknesses, respectively. When increasing the periodic number, the detection wavelength first increases distinctly for small periodic numbers then increases very slightly for large period numbers. Secondly, the wave function overlap diminishes with increasing InAs and InxGa1-xSb layer thicknesses, while it enhances with increasing In mole fraction. The dependence of the wave function overlap on the periodic number shows the same trend as that of the detection wavelength on the periodic number. Moreover, for a constant detection wavelength, the wave function overlap becomes greater when the thickness ratio of the InAs over InxGa1-xSb is larger.
Resumo:
By using AKNS [Phys. Rev. Lett. 31 (1973) 125] system and introducing the wave function, a family of interesting exact solutions of the sine-Gordon equation are constructed. These solutions seem to be some soliton, kink, and anti-kink ones respectively for the different choice of the spectrum, whereas due to the interaction between two traveling-waves they have some properties different from usual soliton, kink, and anti-kink solutions.
Resumo:
The properties of Rashba wave function in the planar one-dimensional waveguide are studied, and the following results are obtained. Due to the Rashba effect, the plane waves of electron with the energy E divide into two kinds of waves with the wave vectors k(1)=k(0)+k(delta) and k(2)=k(0)-k(delta), where k(delta) is proportional to the Rashba coefficient, and their spin orientations are +pi/2 (spin up) and -pi/2 (spin down) with respect to the circuit, respectively. If there is gate or ferromagnetic contact in the circuit, the Rashba wave function becomes standing wave form exp(+/- ik(delta)l)sin[k(0)(l-L)], where L is the position coordinate of the gate or contact. Unlike the electron without considering the spin, the phase of the Rashba plane or standing wave function depends on the direction angle theta of the circuit. The travel velocity of the Rashba waves with the wave vector k(1) or k(2) are the same hk(0)/m*. The boundary conditions of the Rashba wave functions at the intersection of circuits are given from the continuity of wave functions and the conservation of current density. Using the boundary conditions of Rashba wave functions we study the transmission and reflection probabilities of Rashba electron moving in several structures, and find the interference effects of the two Rashba waves with different wave vectors caused by ferromagnetic contact or the gate. Lastly we derive the general theory of multiple branches structure. The theory can be used to design various spin polarized devices.
Resumo:
Using the density function theory within the generalized gradient approximation, the band structures of wurtzite ZnO, BeO and MgO have been calculated. The effective-mass parameters are fitted using the calculated eigenvalues. The Dresselhaus spin-orbit effect appears in the k[1 00] direction, and is zero in the high symmetry direction k[00 1]. The orderings of valence band split by the crystal-field and spin-orbit coupling in wurtzite ZnO, BeO and MgO are identified by analyzing the wave function characters calculated by projecting the wave functions onto p-state in the spherical harmonics. For wurtzite ZnO, the ordering of valence band is Still Gamma(7) > Gamma(9) > Gamma(7) due to the negative spin-orbit coupling splitting energy and the positive crystal-field splitting energy. Thus, the Thomas' conclusion is confirmed. For wurtzite BeO and MgO, although their orderings of valence bands are Gamma(7) > Gamma(9) > Gamma(7) too, the origins of their orderings are different from that of wurtzite ZnO. Zn1-x,YxO (Y = Mg, Be) doped with N and P atoms have been studied using first-principles method. The calculated results show that N atom doped in Zn1-x BexO has more shallow acceptor energy level with increasing the concentration of Be atom. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.
Resumo:
The Mg-Ga acceptor energy levels in GaN and random Al8In4Ga20N32 quaternary alloys are calculated using the first-principles band-structure method. We show that due to wave function localization, the MgGa acceptor energy level in the alloy is significantly lower than that of GaN, although the two materials have nearly identical band gaps. Our study demonstrates that forming AlxInyGa1-x-yN quaternary alloys can be a useful approach to lower acceptor ionization energy in the nitrides and thus provides an approach to overcome the p-type doping difficulty in the nitride system.
Resumo:
The subband structure and inter-subband transition as a function of gate voltage are determined by solving the Schrodinger and Poisson equations self-consistently in an AlxGa1-xN/GaN heterostructure. Different aluminum mole fraction and thickness of AlxGa1-xN barrier are considered. Calculation results show that energy difference between the first and second subband covers a wide range (from several tens to hundreds milli-electron volt) by applying different gate voltage, which corresponds to the midinfrared and long-wave infrared wavelength scope. Furthermore, such a modulation on the subband transition energy is much more pronounced for the structure with thin barrier. When the applied positive gate voltage is increased, the triangle well formed at the interface turns to be deeper and narrower, which enhances the confinement for electrons. As a result, the overlap between electron wave function at two subbands increases, and thus the optical intersubband transition also enhances its intensity. This tendency is in good agreement with the available data in the literature. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the ground exciton energy pressure coefficients of self-assembled InAs/GaAs quantum dots by calculating 21 systems with different quantum dot shape, size, and alloying profile using the atomistic empirical pseudopotential method. Our results confirm the experimentally observed significant reductions of the exciton energy pressure coefficients from the bulk values. We show that the nonlinear pressure coefficients of the bulk InAs and GaAs are responsible for these reductions, and the percentage of the electron wave function on top of GaAs atoms is responsible for the variation of this reduction. We also find a pressure coefficient versus exciton energy relationship which agrees quantitatively with the experimental results. We find linear relationships which can be used to get the information of the electron wave functions from exciton energy pressure coefficient measurements.
Resumo:
We have studied the exciton states in vertically stacked self-assembled quantum disks within the effective mass approximation. The energy spectrum of the electron and hole is calculated using the transfer matrix formalism in the adiabatic approximation. The Coulomb interaction between the electron and the hole is treated accurately by the direct diagonalization of the Hamiltonian matrix. The effect of the vertical alignment of the disks on the ground energy of heavy- and light-hole exciton is presented and discussed. The binding energy is discussed in terms of the probability of the ground wave function. The ground energy of heavy- and light-hole excitons as a function of the magnetic field is presented and the effect of the disk size (the radius of disks) on the exciton energy is discussed.
Resumo:
The three-dimensional morphology of In(Ga)As nanostructures embedded in a GaAs matrix is investigated by combining atomic force microscopy and removal of the GaAs cap layer by selective wet etching. This method is used to investigate how the morphology of In(Ga)As quantum dots changes upon GaAs capping and subsequent in situ etching with AsBr3. A wave function calculation based on the experimentally determined morphologies suggests that quantum dots transform into quantum rings during in situ etching. (c) 2007 American Institute of Physics.
Resumo:
The hole Rashba effect and g-factor in InP nanowires in the presence of electric and magnetic fields which bring spin splitting are investigated theoretically in the framework of eight-band effective-mass envelop function theory, by expanding the lateral wave function in Bessel functions. It is well known that the electron Rashba coefficient increases nearly linearly with the electric field. As the Rashba spin splitting is zero at zero k(z) ( the wave vector along the wire direction), the electron g-factor at k(z) = 0 changes little with the electric field. While we find that as the electric field increases, the hole Rashba coefficient increases at first, then decreases. It is noticed that the hole Rashba coefficient is zero at a critical electric field. The hole g-factor at k(z) = 0 changes obviously with the electric field.