21 resultados para Waterfall Display
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Blue, green and red emissions through frequency upconversion and energy transfer processes in Tm3+/Er3+/Yb3+-codoped oxyhalide tellurite glass under 980 nm excitation are investigated. The intense blue (476 nm), green (530 and 545 nm) and red (656 nm) emissions are simultaneously observed at room temperature. The blue (476 nm) emission was originated from the (1)G(4)->H-3(6) transition of Tm3+. The green (530 and 545 nm), and red (656 nm) upconversion luminescences were identified from the H-2(11/2)->I-4(15/2), S-4(3/2)->I-4(15/2), and F-4(9/2)->I-4(15/2) transitions of Er3+, respectively. The energy transfer processes and possible upconversion mechanisms are evaluated. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report an alternative medium of transparent upconverting colloid containing lanthanide ion doped NaYF4 nanocrystals for three-dimensional (3D) volumetric display. The colloids exhibit tunable upconversion luminescence with a wide spectrum of colors by adjusting the doping concentrations of the nanocrystals and the compositions of the colloids. Our preliminary experimental result indicates that an upconverting colloid-based 3D volumetric display using a convergent, near infrared laser beam to induce a localized luminescent spot near the focus is technically feasible. Therefore arbitrary 3D objects can be created inside the upconverting colloid by use of computer controlled 3D scanning systems. (C) 2008 Optical Society of America
Resumo:
Color filters are key components in an optical engine projection display system. In this paper, a new admittance-matching method for designing and fabricating the high performance filters is described, in which the optimized layers are limited to the interfaces between the stack (each combination of quarter-wave-optical-thickness film layers is called a stack) and stack, or between stack and substrate, or between stack and incident medium. This method works well in designing filters containing multiple stacks such as UV-IR cut and broadband filters. The tolerance and angle sensitivity for the designed film stacks are analyzed. The thermal stability of the sample color filters was measured. A good result in optical performance and thermal stability was obtained through the new design approach. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Color filters are key components in an optical engine projection display system. In this paper, a new admittance-matching method for designing and fabricating the high performance filters is described, in which the optimized layers are limited to the interfaces between the stack (each combination of quarter-wave-optical-thickness film layers is called a stack) and stack, or between stack and substrate, or between stack and incident medium. This method works well in designing filters containing multiple stacks such as UV-IR cut and broadband filters. The tolerance and angle sensitivity for the designed film stacks are analyzed. The thermal stability of the sample color filters was measured. A good result in optical performance and thermal stability was obtained through the new design approach. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Ranid frogs of the genus Amolops occur in Southeast Asia and are typically found near waterfalls. Their phylogenetic relationships have not been resolved. We include 2,213 aligned nucleotide sites of the 12S, 16S and tRNA(val) gene regions of the mitochondrial DNA genome from 43 individuals of Chinese and Vietnamese Amotops, Huia, Hylarana, Meristogenys, Odorrana and Rana. The outgroup species were from the genera Chaparana, Limnonectes, Nanorana, and Paa. The data were analyzed within the framework of a refutationist philosophy using maximum parsimony. Four clades of waterfall frogs were resolved. Meristogenys was not resolved as the sister group to either Huia nor Amolops. The hypothesis Of evolutionary relationships placed Amolops chapaensis and Huia nasica in the genus Odorrana.
Resumo:
The lipase genes of Yarrowia lipolytica, LIPY7 and LIPY8, fused with FLO-flocculation domain sequence from Saccharomyces cerevisiae at their N-termini, were expressed in Pichia pastoris KM71. Following the induction with methanol, the recombinant proteins were displayed on the cell surface of P. pastoris, as confirmed by the confocal laser scanning microscopy. The LipY7p and LipY8p were anchored on P. pastoris via the flocculation functional domain of Flo 1 p. The surface-displayed lipases were characterized for their application as the whole-cell biocatalyst. These lipases can also be cleaved off from their anchor by enterokinase treatment to yield functionally active proteins in the supernatant offering an alternative purification method for LipY7p and LipY8p. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
White spot syndrome virus (WSSV) is one of the most significant viral pathogens causing high mortality and economic damage in shrimp aquaculture. Although intensive efforts were undertaken to detect and characterize WSSV infection in shrimp during the last decade, we still lack methods either to prevent or cure white spot disease. Most of the studies on neutralizing antibodies from sera have been performed using in vivo assays. For the first time, we report use of an in vitro screening method to obtain a neutralizing scFv antibody against WSSV from a previously constructed anti-WSSV single chain fragment variable region (scFv) antibody phage display library. From clones that were positive for WSSV by ELISA, 1 neutralizing scFv antibody was identified using an in vitro screening method based on shrimp primary lymphoid cell cultures. The availability of a neutralizing antibody against the virus should accelerate identification of infection-related genes and the host cell receptor, and may also enable new approaches to the prevention and cure of white spot disease.
Resumo:
In a previous study, a scFv phage display library against white spot syndrome virus (WSSV) was constructed and yielded a clone designated A I with conformational specificity against native but not denatured viral antigen. Although the clone A1 has been used successfully as a diagnostic antibody, its precise target antigen has not been elucidated. A different strategy was adopted involving the construction of a second T7 phage display library utilizing mRNA isolated from shrimp infected with WSSV. Following RT-PCR and T7 phage library construction, phages displaying the candidate epitope were selected with A I scFv. Since successive enrichment steps were not associated with an increased titer of the phages, enrichment after successive tests was confirmed by PCR resulting in the prefer-red selection of a specific DNA sequence encoding a novel nucleocapsid protein WSSV388. Immune electron microscopy revealed that WSSV388 is located on the nucleocapsid. This result demonstrated that unknown antigen could be identified by phage display using the epitope conformation dependent scFv. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Immunological methods have been developed for the diagnosis of Myxobolus rotundus but their use has been limited for the prevention and therapy of this serious parasitic pathogen. Phage display antibody libraries are a powerful technique for the development of antibodies to molecules of interest and have advantages over traditional hybridroma approaches. In the present study, four antigen fractions related to M. rotundus were prepared and a combined phage display single-chain antibody fragments (ScFv) library was constructed against this parasite. Preliminary analysis indicated that a combined antibody library of about 2.08 X 10(5) individual clones and high diversity was generated. After four rounds of screening (bio-panning) against soluble spore protein prepared from lysed, intact, mature M rotundus spores, a strain monoclonal phage display ScFv, termed pCAN-6H9, with better affinity, was isolated. The pCAN-6H9 gene fragment was sequenced and analysed. The specificity of pCAN-6H9 was further demonstrated by dot-blot. In competition enzyme-linked immunosorbent assay, both the original and enriched phage-displayed ScFv repertoire showed significant inhibition of mouse anti-M rotundus serum binding to coated antigen, while the inhibition rate of monoclonal pCAN-6H9 phage particles was only 11.83%.
Resumo:
New approaches of making single chain Fv antibodies against O-6-methyl-2'-deoxyguanosine (O(6)MdG) have been demonstrated by using the phage antibody display system. Using O(6)MdG as an antigen, 21 positive clones were identified by ELISA from this library, one of which, designated H3, specifically binds to O(6)MdG with high affinity. The H3 scFv antibody has an affinity constant (K-aff) of 5.94 x 10(11)(mol/L)(-1). H3 scFv has been successfully used to detect O-6 MdG in DNA hydrolyses from yeast or E. coli cells treated with a DNA methylating agent. To our knowledge, this is the first report of the selection of a specific scFv against DNA adducts. The results demonstrate the potential applications of the phage display technology for the detection of DNA lesions caused by mutagens and carcinogens.
Resumo:
Photoinduced anisotropy of a photochromic pyrrylfulgide/PMMA film was investigated by using two linearly polarized beams. Excitation by linearly polarized light induces into the film an optical axis that has the same polarization as the excitation beam. This causes a change of the transmittance and of the polarization state of the detection beam. With a microscope a matrix of 4x4 light spots with different polarizations were recorded in the pyrrylfulgide/PMMA film. If readout with non-polarized light, the matrix of light spots show no information pattern. However, when readout with differently polarized lights, different patterns can be displayed. The experiment demonstrates that pyrrylfulgide/PMMA films can be used to hide two differently polarized patterns, which may be applied in camouflage technology. (C) 2005 Optical Society of America.
Resumo:
Electron. Manuf. Packag. Technol. Soc. Chin. Inst. Electron.; IEEE Compon., Packag., Manuf. Technol. Soc. (IEEE-CPMT); Xidian University
Resumo:
This paper reports a new patterning method, the complementary-structure micropatterning (CSMP) technique, to fabricate the undercut structures for the passive-matrix display of organic light-emitting diodes (OLEDs). First, the polyvinylpyrrolidone (PVP) stripe patterns with a trapeziform cross-section were formed by micromolding in capillaries. Then the photoresist was spin coated on the substrate with the patterned PVP stripes and developed in water.
Resumo:
Excitation and emission characteristics were reviewed for phosphors which were reported, applied, or suggested for the plasma display panel (PDP). Correlation of luminescence characteristics to the host crystal structure and the activator of the phosphor was explained. Improvements of the PDP phosphor for practicality were considered. (C) 2000 Elsevier Science S.A. All rights reserved.