14 resultados para Water Retention

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Taihu Lake is the third largest fresh water lake in China. With the fast economic development, abundant industrial and agricultural waste water has been discharged into Taihu Lake, causing the eutrophication of the water quality, which greatly affected the water utility. In the past decades, the treatment of Taihu Lake has witnessed limited success. Therefore, it is practically and theoretically significant to study the eutrophication of Taihu Lake. This research has focused on the issue of water quality including the characteristics of spatial and temporal distributions, and the rules of nutrient diffusion in the Taihu lake area. Based on the monitoring data, the basis distribution characteristics of water quality in Taihu Lake are analyzed. Comparing Taihu Lake with other Lakes shows that one important reason for Taihu eutrophication is the long period of water retention. A transporting and diffusing model of Taihu nutrient is developed by combining with the hydrodynamics model. Using the model, the concentration field of the total phosphorus (TP) and the influence of wind-driven current are numerically investigated, which leads to the conclusion that the flow field has a great influence on the spatial and temporal distributions of TP in Taihu Lake. Furthermore, the effect for improving the water quality by the project of water diversion from the Yangtze River to Taihu Lake was analyzed by simulation. The results demonstrate that short-term water diversion cannot improve the water quality of the heavily-polluted Meiliang Bay and the western bank areas of Taihu Lake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

为分析不同土地利用方式下坡面土壤水分特性的差异和规律,对黄土高原水蚀风蚀交错带典型坡面上农地、林地和草地的土壤水分特性进行了分析。结果表明:(1)苜蓿地土壤的持水能力和供水能力最强,其次是杏树林和长芒草地,谷子地最差;(2)通过土壤水分有效性分析发现,水蚀风蚀交错带田间持水量相当于-0.2×105Pa土壤基质势时的土壤含水量,永久凋萎点则低于-2.0×106Pa土壤基质势对应的土壤含水量;(3)苜蓿地有效水含量最高,谷子地有效水含量最低,而且苜蓿地土壤有效水含量的提高主要是提高了迟效水部分;(4)对不同土地利用方式下的土壤比水容量变化曲线研究表明,土壤比水容量在田间持水量附近随土壤含水量的降低减小的很快,而当土壤水分降低到田间持水量的50%~60%以下时,土壤比水容量基本不变。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在试验过程中,通常采用一个土样进行连续试验来测定土壤的持水特征。此时,土样的有机质、黏粒矿物类型和阳离子交换量等性质基本保持不变,而土壤的容重在水力学和机械压力共同作用下会发生很大的变化。因此,我们认为实测的土壤持水特征不再是土壤吸力和含水量相对应的一条曲线,而是由土壤质量含水量、吸力和容重三变量共同确定的一个曲面。本文在Brooks-Corey土壤水分特征曲线模型的基础上,提出了两种描述土壤质量含水量、吸力和容重三变量关系的曲面模型,分析了模型的优缺点和适用条件,并采用离心机石蜡控容重法实测了四种质地填装土壤的三变量特征曲面。研究结果表明:土壤持水特征是由土壤质量含水量、吸力和容重三变量共同确定的一个曲面这一假设是合理的;类似于Brooks-Corey模型的两种幂函数经验曲面模型能够合理地描述填装土壤的实测数据,决定系数均大于0.94;模型Ⅰ的拟合效果略好于模型Ⅱ,但模型Ⅱ包含两个物理意义明确的参数,具有一定的优势。这一研究将为校正容重变化对土壤水力学参数的影响提供新的途径。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用离心机法,研究聚丙烯酸钠与聚丙烯酰胺2种高分子化合物在5种使用浓度(占干土质量0、0.01%、0.08%、0.2%与1%)的条件下对3种土壤(砂土、壤土、黏土)持水能力的影响。结果表明:3种土壤在0.01~1.5MPa水吸力时,持水能力随着2种高分子材料用量的增加而增加,砂土的作用效果较壤土、黏土更显著;2种高分子材料与土壤质量比控制在8/10000~2/1000范围内其作用效果较好,该用量条件下高分子吸持水分平均可释放83.7%供植物吸收利用。2种高分子材料对土壤持水能力的作用效果基本相同。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

为探讨在宁南山区推广保护性耕作技术的可行性,2005~2006年在宁夏彭阳县就垄沟、传统、覆膜3种不同的耕作方式的适应性进行试验研究,对比分析了3种耕作方式下冬小麦的生长状况、产量及农田土壤含水量变化的关系。结果表明:覆膜耕作可增加土壤蓄水保墒性能,提高水分利用效率,增产增效明显。对三种耕作方式下作物产量进行分析,覆膜耕作比传统耕作增产46%;垄沟耕作比传统耕作减产71%。覆膜耕作水分利用效率比传统耕作提高了33%;垄沟耕作由于在越冬期垄上冬小麦大面积冻死,不适宜在宁南山区推广。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

以聚丙烯酰胺(PAM)与磷石膏(PG)为土壤结构改良剂,利用离心机法,测定土壤水分特征曲线,从分析土壤的吸水能力和持水能力的角度出发,研究土壤结构改良剂对土壤水分有效性的影响。研究结果表明,土壤的吸水能力、持水能力与释水能力均表现出与用量密切相关;在使用土壤结构改良剂的情况下,仍然可用van Genuchten方程很准确的模拟土壤吸力与含水率之间的关系,即可作为使用土壤结构改良剂后的土壤水分特征曲线的模拟表达式;在试验的用量范围内,土壤结构改良剂的使用不会影响植物对水分的吸收和利用。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Saprolite is the residual soil resulted from completely weathered or highly weathered granite and with corestones of parent rock. It is widely distributed in Hong Kong. Slope instability usually happens in this layer of residual soil and thus it is very important to study the engineering geological properties of Saprolite. Due to the relic granitic texture, the deformation and strength characteristics of Saprolite are very different from normal residual soils. In order to investigate the effects of the special microstructure on soil deformation and strength, a series of physical, chemical and mechanical tests were conducted on Saprolite at Kowloon, Hong Kong. The tests include chemical analysis, particle size analysis, mineral composition analysis, mercury injection, consolidation test, direct shear test, triaxial shear test, optical analysis, SEM & TEM analysis, and triaxial shear tests under real-time CT monitoring.Based on the testing results, intensity and degree of weathering were classified, factors affecting and controlling the deformation and strength of Saprolite were identified, and the interaction between those factors were analyzed.The major parameters describing soil microstructure were introduced mainly based on optical thin section analysis results. These parameters are of importance and physical meaning to describe particle shape, particle size distribution (PSD), and for numerical modeling of soil microstructure. A few parameters to depict particle geometry were proposed or improved. These parameters can be used to regenerate the particle shape and its distribution. Fractal dimension of particle shape was proposed to describe irregularity of particle shapes and capacity of space filling quantitatively. And the effect of fractal dimension of particle shape on soil strength was analyzed. At the same time, structural coefficient - a combined parameter which can quantify the overall microstructure of rock or soil was introduced to study Saprolite and the results are very positive. The study emphasized on the fractal characteristics of PSD and pore structure by applying fractal theory and method. With the results from thin section analysis and mercury injection, it was shown that at least two fractal dimensions Dfl(DB) and Df2 (Dw), exist for both PSD and pore structure. The reasons and physical meanings behind multi-fractal dimensions were analyzed. The fractal dimensions were used to calculate the formation depth and weathering rate of granite at Kowloon. As practical applications, correlations and mathematical models for fractal dimensions and engineering properties of soil were established. The correlation between fractal dimensions and mechanical properties of soil shows that the internal friction angle is mainly governed by Dfl 9 corresponding to coarse grain components, while the cohesion depends on Df2 , corresponding to fine grain components. The correlations between the fractal dimension, friction angle and cohesion are positive linear.Fractal models of PSD and pore size distribution were derived theoretically. Fragmentation mechanism of grains was also analyzed from the viewpoint of fractal. A simple function was derived to define the theoretical relationship between the water characteristic curve (WCC) and fractal dimension, based on a number of classical WCC models. This relationship provides a new analytical tool and research method for hydraulic properties in porous media and solute transportation. It also endues fractal dimensions with new physical meanings and facilitates applications of fractal dimensions in water retention characteristics, ground water movement, and environmental engineering.Based on the conclusions from the fractal characteristics of Saprolite, size effect on strength was expressed by fractal dimension. This function is in complete agreement with classical Weibull model and a simple function was derived to represent the relationship between them.In this thesis, the phenomenon of multi-fractal dimensions was theoretically analyzed and verified with WCC and saprolite PSD results, it was then concluded that multi-fractal can describe the characteristics of one object more accurately, compared to single fractal dimension. The multi-fractal of saprolite reflects its structural heterogeneity and changeable stress environment during the evolution history.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The retention factors (k) of 104 hydrophobic organic chemicals (HOCs) were measured in soil column chromatography (SCC) over columns filled with three naturally occurring reference soils and eluted with Milli-Q water. A novel method for the estimation of soil organic partition coefficient (K-oc) was developed based on correlations with k in soil/water systems. Strong log K-oc versus log k correlations (r>0.96) were found. The estimated K-oc values were in accordance with the literature values with a maximum deviation of less than 0.4 log units. All estimated K-oc values from three soils were consistent with each other. The SCC approach is promising for fast screening of a large number of chemicals in their environmental applications. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impacts of submerged macrophytes on kinetics of alkaline phosphatase were studied in two 680 m(2) enclosures in a shallow Chinese freshwater lake (Donghu Lake) from April to October 1996, and two experimental pools (120 m(2)) built inland in 1998. The submerged macrophytes were Vallisneria sp, Potamogeton crispus. In the presence of macrophytes, the concentration of orthophosphate was significantly lower, coupled with the decreasing function of organic P hydrolysis, in terms of lower V-max and higher K-m values of aIkaline phosphatase in water, filtered and unfiltered (0.45 mu m); in the interstitial water, the V-max values of the enzyme in sediments were significantly lower, exhibited by a spatial and vertical profile. The results implied the key role of submerged macrophytes was the retention of P nutrients. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reversed-phase high performance liquid chromatography (RP-HPLC) was employed to develop predictive models for fish bioconcentration factors (BCF) of organic compounds. Estimation of BCF from RP-HPLC retention parameters on octadecyl-bonded silica gel (ODS), cyanopropyl-bonded silica gel (CN), and phenyl-bonded silica gel (Ph) columns were investigated. The results show that, for a set of compounds belonging to different chemical classes, the CN stationary phase is the best one among the three columns and better than n-octanol/water model for BCF estimation. A multi-column RP-HPLC model, using the retention parameters on the CN and Ph columns as the variables of multiple linear regression equations, was further evaluated to estimate BCF of organic compounds belonging to different chemical classes, and the results show that the multi-column RP-HPLC model is better than that of any single RP-HPLC column for BCF estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of methanol in methanol-water mixed eluents on the capacity factor (P), an important parameter which could depict leaching potential of hydrophobic organic chemicals (HOCs) in soil leaching column chromatography (SLCC), was investigated. Two reference soils, GSE 17201 obtained from Bayer Landwirtschaftszentrum, Monheim, Germany and SP 14696 from LUFA, Spencer, Germany, were used as packing materials in soil columns, and isocratic elution with methanol-water mixtures at different volume fractions of methanol (phi) were tested. Shortterm exposure of the column (packed with the GSE 17201 soil) to the eluents increased solute retention by a certain (23% log-unit) degree evaluated through a correlation with the retention on the same soil column but unpreconditioned by methanol-containing eluents. Long-term exposure of soil columns to the eluents did not influence the solute retention. A log-linear equation, log k' = log k'(w) - Sphi, could well and generally describe the retention of HOCs in SLCC. For the compounds of homologous series, logk'(w), had good linear relationship with S, indicating the hydrophobic partition mechanism existing in the retention process. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C-18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) = XYZ(0) + mV(1)/100 + spi* + bbeta(m) + aalpha(m), was applied to analyze capacity factors (k'), soil organic partition coefficients (K-oc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control log K-oc, log P, and log k' (on soil and on C-18) are the solute size (V-1/100) and hydrogen-bond basicity (beta(m)). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpha(m)). Log k' on soil and log K-oc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C-18 and log P have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, log k' values on C-18 have good correlations with log P (r > 0.97), while log k' values on soil have good correlations with log K-oc (r > 0.98). Two K-oc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degreesC was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degreesC (k'(30)/k'(40)) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C-18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former. (C) 2002 Elsevier Science Ltd. All rights reserved.