7 resultados para Water Purification
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r = 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system, microorganism and urease activities in the root zones were very important factors.
Resumo:
The feasibility of an inexpensive wastewater treatment system is evaluated in this study. An integrated biological pond system was operated for more than 3 years to purify the wastewater from a medium-sized city, Central China. The experiment was conducted in 3 phases with different treatment combinations for testing their purification efficiencies. The pond system was divided into 3 functional regions: influent purification, effluent upgrading and multi-utilization. These regions were further divided into several zones and subzones. Various kinds of aquatic organisms, including macrophytes, algae, microorganisms and zooplankton, were effectively cooperating in the wastewater treatment in this system. The system attained high reductions of BOD5, COD, TSS, TN, TP and other pollutants. The purification efficiencies of this system were higher than those of most traditional oxidation ponds or ordinary macrophyte ponds. The mutagenic effect and numbers of bacteria and viruses declined significantly during the process of purification. After the wastewater flowed through the upgrading zone, the concentrations of pollutants and algae evidently decreased. Plant harvesting did not yield dramatic effects on reductions of the main pollutants, though it did significantly affect the biomass productivity of the macrophytes. The effluent from this system could be utilized in irrigation and aquaculture. Some aquatic products were harvested from this system and some biomass was utilized for food, fertilizer, fodder and some other uses. The wastewater was reclaimed for various purposes.
Resumo:
While investigating the innate defense of brackish water-living amphibian and its comparison with freshwater-living amphibians, two novel 12-residue antimicrobial peptides were purified from the skin secretions of the crab-eating frog, Fejervarya cancrivo
Resumo:
Pollution resulting from increased human activities is threatening Lake Donghu, its effects being characterized by serious eutrophication. A steady increase of phosphorus loading is the most important factor of the lake eutrophication. Pollution external control projects are being implemented and will be accomplished before the year 2010. In order to predict the restoration rate by the lake's self-purification after the projects of external control, a model of predicting the removal rate of total phosphorus (TP) from lake water is developed, and a brief method of estimating the release and export rate of sediment phosphorus is suggested. Results show that, on the premise of external loading fully controlled. The restoration needs about 55 years or more. Obviously, the great P pool in the sediment will be a limiting factor of preventing the improvement of water quality after the external loading is under control. Based on the estimation we conclude that after the external control projects before 2010, in order to restore the lake in a few years, although highly cost, the first step must be the sediment dredging to remove internal loading. The second step is diverting water of River Changjiang into the lake to accelerate the improvement of lake water. Otherwise, removal of pollutant sources will become meaningless. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A vertical/reverse-vertical flow constructed wetland system was set up in Wuhan, China, to study its treatment efficiency of polluted lake water. The numbers of substrate microorganisms and urease activities in the substrate of the constructed wetland were determined by plate counts and colorimetric analysis, respectively. The removal efficiencies of biochemical oxygen demands (BOD5). chemical oxygen demands (COD), total phosphorus (TP), total Kjeldahl nitrogen (TKN), and total suspended solids (TSS) were measured by EPA approved methodology. The results showed there were significant positive correlations (P < 0.05) between numbers of microorganism in the substrate and removal rates of TKN and CODCr. Meanwhile, there was significant positive correlation (P < 0.05) between urease activities and removal efficiencies of TKN and negative correlation between urease activities and removal efficiencies of BOD5. Substrate microorganisms and urease activities played key factors during purification processes and they could be utilized as indicator of wastewater treatment performances in the constructed wetland system. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Although colorless ionic liquids (ILs) are most desirable, as synthesized they frequently bear color, despite appearing pure by most analytical techniques. It leads to some uncertainties and limits for the fundamental research and applications of ILs, such as spectroscopy. Using 1-butyl-3-methylimidazolium bromide (BMIMBr), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) and 1-hexyl-3-methylimidazolium bromide (HMIMBr) as models, we demonstrated that following classic preparing method except that the water was added as solvent, colorless ILs could be facilely prepared. Neither critical pre-treatment of starting materials and pre-cautions during the reaction nor time-consuming and costly post-decolor-purification was needed, The effects of "on water" reaction conditions on preparing colorless IL and the reason why using water as solvent could produce colorless ILs were also preliminary investigated.
Resumo:
High-speed counter-current chromatography (HSCCC) technique in semi-preparative scale has been successfully applied to the separation of bioactive flavonoid compounds, liquiritigenin and isoliquiritigenin in one step from the crude extract of Glycyrrhiza uralensis Risch. The HSCCC was performed using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-acetonitrile-water (2:2:1:0.6:2, v/v). Yields of liquiritigenin (98.9% purity) and isoliquiritigenin (98.3% purity) obtained were 0.52% and 0.32%. Chemical structures of the purified liquiritigenin and isoliquiritigenin were identified by electrospray ionization-MS (ESI-MS) and NMR analysis. (c) 2005 Published by Elsevier B.V.