5 resultados para Water Framework Directive
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A novel accurate numerical model for shallow water equations on sphere have been developed by implementing the high order multi-moment constrained finite volume (MCV) method on the icosahedral geodesic grid. High order reconstructions are conducted cell-wisely by making use of the point values as the unknowns distributed within each triangular cell element. The time evolution equations to update the unknowns are derived from a set of constrained conditions for two types of moments, i.e. the point values on the cell boundary edges and the cell-integrated average. The numerical conservation is rigorously guaranteed. in the present model, all unknowns or computational variables are point values and no numerical quadrature is involved, which particularly benefits the computational accuracy and efficiency in handling the spherical geometry, such as coordinate transformation and curved surface. Numerical formulations of third and fourth order accuracy are presented in detail. The proposed numerical model has been validated by widely used benchmark tests and competitive results are obtained. The present numerical framework provides a promising and practical base for further development of atmospheric and oceanic general circulation models. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Two copper-organic framework supramolecular assemblies of p-sulfonatocalix[4]arene and 1,10-phenanthroline Cu-2[C12H8N2][C28H20S4O16][H2O](23.5) (1) and Cu-3[C12H8N2](3)[C28H19S4O16]Cl[H2O](17.6) (2) were obtained by pH-dependent synthesis at room temperature. Both structures show ID water-filled channels (rectangular shape in I and triangular in 2) with the solvent-accessible volume occupying 30.8% (1) and 24.2% (2) of the unit-cell volume, respectively. The calixarene molecules in both structures assume analogous cone shapes of C-2 nu symmetry instead of the conventional C-4 nu symmetry. Their connecting to different amounts of copper/phenanthroline cations leads to the formation of different structures.
Resumo:
The reaction of Cu(BF4)(2) with pyridine-2,6-dicarboxylic acid (H(2)pydc) and trans-1,2-bis(4-pyridyl)ethylene (bpe) under hydrothermal conditions afforded a porous mixed-valence (CuCuII)-Cu-I coordination polymer. Coexistence of tetrameric and decameric water clusters within the channels of the complex leads to a novel water chain. The metal-organic framework provides both hydrophilic and hydrophobic environments for stabilizing the clusters and retains its integrity upon dehydration and rehydration.
Resumo:
Two new Cull coordination polymers, namely [Cu-2(BDC)(2)(L)(4)(H2O)(2)]center dot 14H(2)O (1) and [Cu-1.5(BTC)(L)(1.5)(H2O)(0.5)]center dot 2H(2)O (2), where L = 1,1'-(1,4-butanediyl)bis(imidazole), BDC = 1,4-benzene dicarboxylate, and BTC = 1,3,5-benzenetricarboxylate, have been synthesized at room temperature. Complex 1 exhibits an unusual, square-planar, four-connected 2D (2)(6)4 net, which has been predicated by Wells. Interestingly, three types of water clusters, namely (H2O)(6), (H2O)(8), and (H2O)(10), are observed in the hydrogen-bonded layers constructed by the BDC ligands and water molecules. The BTC anion in compound 2 is coordinated to the Cu" cation as tetradentate ligand to form a (6(6))(2)(4(2)6(4)8(4))(2)(6(4)810) net containing three kinds of nonequivalent points, Thermogravimetric analyses (TGA) and IR spectra for 1 and 2 are also discussed in detail.
Resumo:
A novel self-assembled layer consisting of water tetramers and nitrate anions has been observed in the [Co(1,10-phenanthroline)(2)(NO3)]center dot(NO)(3)center dot 4H(2)O complex. X-ray crystallography and FT-IR spectroscopy indicate that although the water tetramers exist in an energetically less stable uudd configuration, the anionic host environments may play an important role in the formation and stabilization of the water clusters.