54 resultados para Water Film

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linear spatio-temporal stability analysis is conducted for the ice growth under a falling water film along an inclined ice plane. The full system of linear stability equations is solved by using the Chebyshev collocation method. By plotting the boundary curve between the linear absolute and convective instabilities (AI/CI) of the ice mode in the parameter plane of the Reynolds number and incline angle, it is found that the linear absolute instability exists and occurs above a minimum Reynolds number and below a maximum inclined angle. Furthermore, by plotting the critical Reynolds number curves with respect to the inclined angle for the downstream and upstream branches, the convectively unstable region is determined and divided into three parts, one of which has both downstream and upstream convectively unstable wavepackets and the other two have only downstream or upstream convectively unstable wavepacket. Finally, the effect of the Stefan number and the thickness of the ice layer on the AI/CI boundary curve is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When water seeps upwards through a saturated soil layer, the soil layer may become instability and water films occur and develop. Water film serves as a natural sliding surface because of its very small friction. Accordingly, debris flow may happen. To investigate this phenomenon, a pseudo-three-phase media is presented first. Then discontinuity method is used to analyze the expansion velocity of water film. Finally, perturbation method is used to analyze the case that a water flow is forced to seep upwards through the soil layer while the movement of the skeleton may be neglected relative to that of water. The theoretical evolutions of pore pressure gradient, effective stress, water velocity, the porosity and the eroded fine grains are obtained. It can be seen clearly that with the erosion and re-deposited of fine grains, permeability at some positions in the soil layer becomes smaller and smaller and, the pore pressure gradient becomes bigger and bigger, while the effective stress becomes smaller and smaller. When the effective stress equals zero, e.f. liquefaction, the water film occurs. It is shown also that once a water film occurs, it will be expanded in a speed of (U)(t)/(1 - E >).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water film can serve as a sliding surface and cause landslides on gentle slopes. The development of "water film" in saturated sand is analyzed numerically and theoretically based on a quasi-three-phase model. It is shown that stable water films initiate and grow if the choking state (where the fluid velocity decreases to near zero) remains steady in a liquefied sand column. Discontinuity can occur in pore water velocity, grain velocity and pore pressure after the initiation of a water film. However, the discontinuity and water film can disappear once the choking state is changed. The key to the formation of water film is the choking in the sand column caused by eroded fine grains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation mechanism of “water film” (or crack) in saturated sand is analyzed theoretically and numerically. The theoretical analysis shows that there will be no stable “water film” in the saturated sand if the strength of the skeleton is zero and no positions are choked. It is shown by numerical simulation that stable water films initiate and grow if the choking state keeps unchanged once the fluid velocities decrease to zero in the liquefied sand column. The developments of “water film” based on the model presented in this paper are compared with experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Capillary forces are significantly dominant in adhesive forces measured with an atomic force microscope (AFM) in ambient air, which are always thought to be dependent on water film thickness, relative humidity, and the free energy of water film. We study the nature of the pull-off force on a variety of surfaces as a function of tip velocity. It is found that the capillary forces are of relatively strong dependence on tip velocity. The present experiment is expected to provide a better understanding of the work mechanism of AFM in ambient air.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Capillary forces are dominant in adhesive forces measured with an atomic force microscope (AFM) in ambient air, which are thought to be dependent on water film thickness, relative humidity and the free energy of the water film. In this paper, besides these factors, we study the nature of the 'pull-off' force on a variety of atmospheres as a function of the contact time. It is found that capillary forces strongly depend on the contact time. In lower relative humidity atmosphere, the adhesion force is almost independent of the contact time. However, in higher relative humidity, the adhesion force increases with the contact time. Based on the experiment and a model that we present in this paper, the growth of the liquid bridge can be seen as undergoing two processes: one is water vapour condensation; the other is the motion of the thin liquid film that is absorbed on the substrate. The experiment and the growth model presented in this paper have direct relevance to the working mechanism of AFM in ambient air.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation mechanism of water film (or crack) in saturated sand is analyzed numerically It is shown that there will be no stable "water film" in the saturated sand even if the strength of the skeleton is zero and no positions are choked. The stable water films initiate and grow if the choking state keeps unchangeable once the fluid velocities of one position decreases to zero in a liquefied sand column. A simplified method for evaluating the thickness of water film is presented according to a solidification wave theory. The theoretical results obtained by the simplified method are compared with the numerical results and the experimental results of Kokusho.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photosynthetic performances of Porphyra haitanensis thalli were investigated in order to understand its mechanisms for exogenous carbon acquisition during emersion at low tide. The emersed photosynthesis was studied by altering the pH value in the water film on the thalli surface, treating them with carbonic anhydarase inhibitors (acetazolamide and 6-ethoxyzolamide), adjusting the CO2 concentrations in the air, and comparing the theoretical maximum CO2 supply rates within the adherent water film with the observed photosynthetic CO2 uptake rates. It was found that the principal exogenous inorganic carbon source for the photosynthesis of P. haitanensis during emersion was atmospheric CO2. The driving force of CO2 flux across the water film was the CO2 concentration gradient within it. Carbonic anhydrase accelerated both extracellular and intracellular CO2 transport. The emersed photosynthesis of P. haitanensis was limited by the present atmospheric CO2 level, and would be enhanced by atmospheric CO2 rise that would trigger global warming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coupling with bionic principles, an attempt to improve the wear resistance of ball bearing steel (GCr15) with biomimetic units on the surface was made using a pulsed Nd: YAG laser. Air and water film was employed as processing medium, respectively. The microstructures of biomimeitc units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases as functions of different mediums as well as water film with different thicknesses. The results indicated that the microstructure zones in the biomimetic specimens processed with water film were more refined and had better wear resistance increased by 55.8% in comparison with that processed in air; a significant improvement in microhardness was achieved by laser surface melting. The application of water film provided considerable microstructural changes and much more regular grain shape in biomimetic units, which played a key role in improving the wear resistance of ball bearing steel. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc oxide (ZnO) surfaces with controllable structures (i.e, microstructure, nanostructure, and micronanobinary structure) have been created by controlling pH at < 4 or > 10.5 in the Zn(gray) + H2O2 reaction. The resulting surface shows superhydrophobicity. It is found that the water contact angle (CA) of the surface with micronanobinary structure is greater than that of nanostructure and that of nanostructure is greater than that of the microstructure. Theoretical analysis is completely in agreement with the experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sol-gel derived TiO2/SiO2/ormosil hybrid planar waveguides have been deposited on soda-lime glass slides and silicon substrates, films were heat treated at 150 degreesC for 2 h or dried at room temperature. Different amounts of water were added to sols to study their impacts on microstructures and optical properties of films. The samples were characterized by m-line spectroscopy, Fourier transform infrared spectroscopy (FT-IR), UV/VIS/NIR spectrophotometer (UV-vis), atomic force microscopy (AFM), thermal analysis instrument and scattering-detection method. The refractive index was found to have the largest value at the molar ratio H2O/OR = 1 in sol (OR means -OCH3, -OC2H5 and -OC4H9 in the sol), whereas the thickest film appears at H2O/OR = 1/2. The rms surface roughness of all the films is lower than 1.1 nm, and increases with the increase of water content in sol. Higher water content leads to higher attenuation of film. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

<正>Elasto-capillarity has drawn much of scientists' attention in the past several years.By inducing electric field into the droplet,the encapsulation and release procedure can be realized and we call it electro-elasto-capillarity(EEC).EEC offers a novel method for micro-scale actuation and self-assemble of moveable devices.It also provides a good candidate for the drug delivery at micro- or nanoscale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new class of polymeric amine, namely, sulfonated cardo poly(arylene ether sulfone) (SPES-NH2) was synthesized and used for the preparation of thin-film composite membrane. The TFC membranes were prepared on a polysulfone supporting film through interfacial polymerization with trimesoyl chloride (TMC) solutions and amine solutions containing SPES-NH2 and m-phenylenediamine (MPDA). The resultant membranes were characterized with water permeation performance, chemical structure, hydrophilicity of active layer and membrane morphology including top surface and cross-section.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The surfactant-capped ZnS nanoparticulate multilayer film has been fabricated by Langmuir-Blodgett(LB) technique. ZnS LB firm was investigated by the small-angle x-ray diffraction(XRD), atomic force microscopy(AFM) and transmission electron microscopy(TEM). The results indicate that ZnS nanoparticulate LB film is one-dimensional superlattice.