7 resultados para Wastewater quality variables

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A self-organizing map (SOM) was used to cluster the water quality data of Xiangxi River in the Three Gorges Reservoir region. The results showed that 81 sampling sites could be divided into several groups representing different land use types. The forest dominated region had low concentrations of most nutrient variables except COD, whereas the agricultural region had high concentrations of NO3N, TN, Alkalinity, and Hardness. The sites downstream of an urban area were high in NH3N, NO2N, PO4P and TP. Redundancy analysis was used to identify the individual effects of topography and land use on river water quality. The results revealed that the watershed factors accounted for 61.7% variations of water quality in the Xiangxi River. Specifically, topographical characteristics explained 26.0% variations of water quality, land use explained 10.2%, and topography and land use together explained 25.5%. More than 50% of the variation in most water quality variables was explained by watershed characteristics. However, water quality variables which are strongly influenced by urban and industrial point source pollution (NH3N, NO2N, PO4P and TP) were not as well correlated with watershed characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combined with the national standard biomonitoring method (polyurethane foam units method), calorimetry was applied to study the metabolic activities of PFU microbial communities in fresh water to determine the effects of anthropotgenic stresses on the activity of the microbial community. Comparisons were made at four sampling stations with different eutrophic status in Lake Donghu. Water quality variables, species number of protozoa, abundances of microorganisms, biomass, heterotrophy indexes and diversity indexes are reported. The heat rate-time curves of the native and concentrated PFU microbial communities were determined at 28 degrees C. Growth rate, measured maximum power output and total heat were calculated from the heat rate-time curves. The values of metabolic variables are higher at the more eutrophic stations, which suggests that organic pollution increases the activity of PFU microbial communities. The metabolic variables are in good agreement with chemical and biotic variables. And calorimetry will be useful for biomonitoring of the PFU microbial community. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coagulation/flocculation process was applied in the polishing treatment of molasses wastewater on a bench-scale. Important operating variables, including coagulant type and dosage, solution pH, rapid mixing conditions as well as the type and dosage of polyeletrolytes were investigated based on the maximum removal efficiencies of chemical oxygen demand (COD) and color, residual turbidity and settling characteristics of flocs. HPSEC was utilized to evaluate the removal of molecular weight fractions of melanoidins-dominated organic compounds. Experimental results indicate that ferric chloride was the most effective among the conventional coagulants, achieving 89% COD and 98% color eliminations; while aluminum sulfate was the least effective, giving COD and color reductions of 66% and 86%, respectively. In addition to metal cations, counter-ions exert significant influence on the coagulation performance since Cl--based metal salts attained better removal efficiency than SO42--based ones at the optimal coagulant dosages. Coagulation of molasses effluent is a highly pH-dependent process, with better removal efficiency achieved at lower pH levels. Rapid mixing intensity, rather than rapid mixing time, has relatively strong influence on the settling characteristics of flocs formed. Lowering mixing intensity resulted in increasing settling rate but the accumulation of floating flocs. When used as coagulant aids, synthetic polyelectrolytes showed little effects on the improvement in organic removal. On the other hand, cationic polyacrylamide was observed to substantially enhance the settleability of flocs as compared to anionic polyacrylamide. The effects of rapid mixing conditions and polymer flocculants on the coagulation performance were discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient-rich effluents caused rising concern due to eutrophication of aquatic environment by utilization of a large amount of formula feed. Nutrient removal and water quality were investigated by planting aquatic vegetable on artificial beds in 36-m(2) concrete fishponds. After treatment of 120 days, 30.6% of total nitrogen (TN) and 18.2% of total phosphorus (TP) were removed from the total input nutrients by 6-m(2) aquatic vegetable Ipomoea aquatica. The concentrations of TN, TP, chemical oxygen demand (COD) and chlorophyll a in planted ponds were significantly lower than those in non-planted ponds (P<0.05). Transparency of water in planted ponds was much higher than that of control ponds. No significant differences in the concentration of total ammonia nitrogen (TAN), nitrate nitrogen (NO3-N) and nitrite nitrogen (NO2--N) were found between planted and non-planted ponds. These results suggested that planting aquatic vegetable with one-sixth covered area of the fishponds could efficiently remove nutrient and improve water quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCB1 for identification purposes. The 90.6% of the clones were affiliated with the two phyla Bacteroidetes (50%) and Proteobacteria (40%), and beta-, -gamma-, and delta-Proteobacteria accounted for 7.8%, 28.1%, and 4.7%, respectively. Minor portions were affiliated with the Actinobacteria and Firmicutes (both 3.1%). Only 6 out of 64 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species, which indicated that a substantial fraction of the clone sequences were derived from unknown taxa. Rarefaction analysis of operational taxonomic units (orrUs) clusters demonstrated that 150 clones screened were still insufficient to describe the whole bacterial diversity. Measurement of water quality parameter demonstrated that performance of the SMBR maintained high level, and the SMBR system remained stable during this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing recognition that protozoa is very useful in monitoring and evaluating water ecological healthy and quality. In order to study the relationship between structure and function of protozoan communities and water qualities, six sampling stations were set on Lake Donghu, a hypereutrophic subtropical Chinese lake. Microbial communities and protists sampling from the six stations was conducted by PFU (Polyurethane foam unit) method. Species number (S), diversity index (DI), percentage of phytomastigophra, community pollution value (CPV), community similarity and heterophy index (HI) were mensurated. The measured indicators of water quality included total phosphorus (TP), dissolved oxygen (DO), Chemical oxygen demand (COD), NH4 (+), NO2 (-) and NO3-. Every month water samples from stations I, II, III, IV were chemically analyzed for a whole year, Among the chemically analyzed stations, station I was the most heavily polluted, station II was the next, stations III and IV had similar pollution degrees. The variable tendencies of COD, TP, NH3, NO2-, NO3-, and DO during the year was approximately coincident among the six stations. Analysis from the community parameters showed that the pollution of station 0 was much more serious than others, and station V was the most slight. Of the community parameters, CPV and HI were sensitive in reflecting the variables of the water quality. Community similarity index was also sensitive in dividing water qualities and the water quality status of different stations could be correctly classified by the cluster analysis. DI could reflect the tendency of water quality gradient, species number and percentage of Phytomastigophora was not obvious in indicating the water quality gradient.