32 resultados para WELL SYSTEMS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
By utilizing time-resolved Kerr rotation techniques, we have investigated the spin dynamics of a high-mobility low density two-dimensional electron gas in a GaAs/Al0.35Ga0.65As heterostructure in the dependence on temperature from 1.5 to 30 K. It is found that the spin relaxation/dephasing time under a magnetic field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, which is superimposed on an increasing background with rising temperature. The appearance of the maximum is ascribed to that at the temperature where the crossover from the degenerate to the nondegenerate regime takes place, electron-electron Coulomb scattering becomes strongest, and thus inhomogeneous precession broadening due to the D'yakonov-Perel' mechanism becomes weakest. These results agree with the recent theoretical predictions [J. Zhou et al., Phys. Rev. B 15, 045305 (2007)], which verify the importance of electron-electron Coulomb scattering to electron spin relaxation/dephasing.
Resumo:
The full spectra of magnetoplasmons and single-particle excitations are obtained of coupled one-dimensional electron gases in parallel semiconductor quantum wires with tunneling. We show the effects of the interwire Coulomb interaction and the tunneling, as well as the magnetic-field-induced localization on the elementary excitations in symmetric and asymmetric coulped quantum wire structures. The interacton and resonance between the plasmon and the intersubband single-particle excitations are found in magnetic fields.
Resumo:
Using the Frohlich potential associated with realistic optical phonon modes in quantum well systems, the energy loss rates of hot electrons, holes, and electron-hole pairs are calculated, with special emphasis on the effects of carrier density, hot phonon population, quantum well width, and phonon dispersion on the hot-carrier relaxation process in quasi-two-dimensional systems. (C) 1998 Academic Press Limited.
Resumo:
The technique of energy extraction using groundwater source heat pumps, as a sustainable way of low-grade thermal energy utilization, has widely been used since mid-1990's. Based on the basic theories of groundwater flow and heat transfer and by employing two analytic models, the relationship of the thermal breakthrough time for a production well with the effect factors involved is analyzed and the impact of heat transfer by means of conduction and convection, under different groundwater velocity conditions, on geo-temperature field is discussed.A mathematical model, coupling the equations for groundwater flow with those for heat transfer, was developed. The impact of energy mining using a single well system of supplying and returning water on geo-temperature field under different hydrogeological conditions, well structures, withdraw-and-reinjection rates, and natural groundwater flow velocities was quantitatively simulated using the finite difference simulator HST3D. Theoretical analyses of the simulated results were also made. The simulated results of the single well system indicate that neither the permeability nor the porosity of a homogeneous aquifer has significant effect on the temperature of the production segment provided that the production and injection capability of each well in the aquifers involved can meet the designed value. If there exists a lower permeable interlayer, compared with the main aquifer, between the production and injection segments, the temperature changes of the production segment will decrease. The thicker the interlayer and the lower the interlayer permeability, the longer the thermal breakthrough time of the production segment and the smaller the temperature changes of the production segment. According to the above modeling, it can also be found that with the increase of the aquifer thickness, the distance between the production and injection screens, and/or the regional groundwater flow velocity, and/or the decrease of the production-and-reinjection rate, the temperature changes of the production segment decline. For an aquifer of a constant thickness, continuously increase the screen lengths of production and injection segments may lead to the decrease of the distance between the production and injection screens, and the temperature changes of the production segment will increase, consequently.According to the simulation results of the single well system, the parameters, that can cause significant influence on heat transfer as well as geo-temperature field, were chosen for doublet system simulation. It is indicated that the temperature changes of the pumping well will decrease as the aquifer thickness, the distance between the well pair and/or the screen lengths of the doublet increase. In the case of a low permeable interlayer embedding in the main aquifer, if the screens of the pumping and the injection wells are installed respectively below and above the interlayer, the temperature changes of the pumping well will be smaller than that without the interlay. The lower the permeability of the interlayer, the smaller the temperature changes. The simulation results also indicate that the lower the pumping-and-reinjection rate, the greater the temperature changes of the pumping well. It can also be found that if the producer and the injector are chosen reasonably, the temperature changes of the pumping well will decline as the regional groundwater flow velocity increases. Compared with the case that the groundwater flow direction is perpendicular to the well pair, if the regional flow is directed from the pumping well to the injection well, the temperature changes of the pumping well is relatively smaller.Based on the above simulation study, a case history was conducted using the data from an operating system in Beijing. By means of the conceptual model and the mathematical model, a 3-D simulation model was developed and the hydrogeological parameters and the thermal properties were calibrated. The calibrated model was used to predict the evolution of the geo-temperature field for the next five years. The simulation results indicate that the calibrated model can represent the hydrogeological conditions and the nature of the aquifers. It can also be found that the temperature fronts in high permeable aquifers move very fast and the radiuses of temperature influence are large. Comparatively, the temperature changes in clay layers are smaller and there is an obvious lag of the temperature changes. According to the current energy mining load, the temperature of the pumping wells will increase by 0.7°C at the end of the next five years. The above case study may provide reliable base for the scientific management of the operating system studied.
Resumo:
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.
Resumo:
We suggest a local pinning feedback control for stabilizing periodic pattern in spatially extended systems. Analytical and numerical investigations of this method for a system described by the one-dimensional complex Ginzburg-Landau equation are carried out. We found that it is possible to suppress spatiotemporal chaos by using a few pinning signals in the presence of a large gradient force. Our analytical predictions well coincide with numerical observations.
Resumo:
The thermovibrational instability of Rayleigh-Marangoni-Benard convection in a two-layer system under the high-frequency vibration has been investigated by linear instability analysis in the present paper. General equations for the description of the convective flow and within this framework, the generalized Boussinesq approximation are formulated. These equations are dealt with using the averaging method. The theoretical analysis results show that the high-frequency thermovibrations can change the Marangoni-Benard convection instabilities as well as the oscillatory gaps of the Rayleigh-Marangoni-Benard convection in two-layer liquid systems. It is found that vertical high-frequency vibrations can delay convective instability of this system, and damp the convective flow down. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The mechanical properties of film-substrate systems have been investigated through nano-indentation experiments in our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by nano-indentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol., 191, 25-32), in which Al-Glass with three different film thicknesses are adopted and it is found that the relation between the hardness H and normalized indentation depth h/t, where t denotes the film thickness, exhibits three different regimes: (i) the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value in the range of 0.1-0.7 of the normalized indentation depth h/t; (iii) after that, the hardness increases with increasing indentation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a deep depth. Strain gradient and substrate effects are proved to coexist in film-substrate nano-indentation experiments. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we present an asymptotic method for the analysis of a class of strongly nonlinear oscillators, derive second-order approximate solutions to them expressed in terms of their amplitudes and phases, and obtain the equations governing the amplitudes and phases, by which the amplitudes of the corresponding limit cycles and their behaviour can be determined. As an example, we investigate the modified van der Pol oscillator and give the second-order approximate analytical solution of its limit cycle. The comparison with the numerical solutions shows that the two results agree well with each other.
Resumo:
We describe the use of a Wigner distribution function approach for exploring the problem of extending the depth of field in a hybrid imaging system. The Wigner distribution function, in connection with the phase-space curve that formulates a joint phase-space description of an optical field, is employed as a tool to display and characterize the evolving behavior of the amplitude point spread function as a wave propagating along the optical axis. It provides a comprehensive exhibition of the characteristics for the hybrid imaging system in extending the depth of field from both wave optics and geometrical optics. We use it to analyze several well-known optical designs in extending the depth of field from a new viewpoint. The relationships between this approach and the earlier ambiguity function approach are also briefly investigated. (c) 2006 Optical Society of America.
Resumo:
Explaining "Tragedy of the Commons" of evolution of cooperation remains one of the greatest problems for both biology and social science. Asymmetrical interaction, which is one of the most important characteristics of cooperative system, has not been sufficiently considered in the existing models of the evolution of cooperation. Considering the inequality in the number and payoff between the cooperative actors and recipients in cooperation systems, discriminative density-dependent interference competition will occur in limited dispersal systems. Our model and simulation show that the local but not the global stability of a cooperative interaction can be maintained if the utilization of common resource remains unsaturated, which can be achieved by density-dependent restraint or competition among the cooperative actors. More intense density dependent interference competition among the cooperative actors and the ready availability of the common resource, with a higher intrinsic contribution ratio of a cooperative actor to the recipient, will increase the probability of cooperation. The cooperation between the recipient and the cooperative actors can be transformed into conflict and, it oscillates chaotically with variations of the affecting factors under different environmental or ecological conditions. The higher initial relatedness (i.e. similar to kin or reciprocity relatedness), which is equivalent to intrinsic contribution ratio of a cooperative actor to the recipient, can be selected for by penalizing less cooperative or cheating actors but rewarding cooperative individuals in asymmetric systems. The initial relatedness is a pivot but not the aim of evolution of cooperation. This explains well the direct conflict observed in almost all cooperative systems.
Resumo:
UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kutz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem 11 (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of NIDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation. (c) 2007 COSPAR, Published by Elsevier Ltd. All rights reserved.
Resumo:
Microcystins are cyclic heptapeptide hepatoxins produced by cyanobacteria. It has been shown that microcystins have adverse effects on animals and on plants as well. Previous researches also indicated that microcystins were capable of inducing oxidative damage in animals both in vivo and in vitro. In this study, tobacco BY-2 suspension cell line was applied to examine the effects of microcystin-RR on plant cells. Cell viability and five biochemical parameters including reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPX) and peroxide dismutase (POD) were investigated when cells were exposed to 50 mg/L microcystin-RR. Results showed that microcystin-RR evoked decline of the cell viability to approximately 80% after treating for 144 h. ROS levels, POD and GPX activities of the treated cells were gradually increased with a time dependent manner. Changes of SOD and CAT activities were also detected in BY-2 cells. After 168 h recovery, ROS contents, POD, GPX and CAT activities returned to normal levels. These results suggest that the microcystin-RR can cause the increase of ROS contents in plant cells and these changes led to oxidant stress, at the same time, the plant cells would improve their antioxidant abilities to combat mirocystin-RR induced oxidative injury. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The confined longitudinal-optical phonon-assisted tunneling through a parabolic quantum well with double barriers in a magnetic field perpendicular to the interfaces is studied theoretically based on a dielectric continuum model. The numerical results show that the applied magnetic field sharpens and heightens the phonon-assisted tunneling peaks in agreement with experimental observation. Furthermore, the phonon-assisted magnetotunneling peaks shift towards the higher biases as the magnetic field increases. In contrast to the results for a rectangular quantum well, the ratio of peak to valley of the phonon-assisted tunneling is larger for the wider well case. It also indicates that the phonon-assisted tunneling current peaks can be easily observed for a wider parabolic quantum well. (C) 2008 Published by Elsevier B.V.