26 resultados para WATER RESERVOIR
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
土壤是疏松多孔体,具有存蓄和调节土壤水分的功能。就目前黄土高原土壤水库及其影响因子进行了评述,重点阐述了土壤水库功能及其与三个主要影响因子(气象因子、植被因子、土壤因子)的关系,并对今后的研究做了展望。土壤水库下边界的界定、不同因子对土壤水库的影响以及土壤水库模型的构建等都有待进一步的研究。
Resumo:
以空间图形和数据库为基础,对土壤水库的相关技术指标、研究深度和静态库容组成等进行了描述、界定和计算。研究认为:安塞县5m深土层土壤水库总库容为1419.78mm/416156万m3,其中死库容占土壤总库容的21.08%,重力库容占土壤总库容的13.82%,有效库容占土壤总库容的65.10%,最大有效库容占总库容的78.92%;从土地利用类型方面来看,坡耕地和荒坡地总库容量最大,分别占研究区土壤水库总库容的37.65%和36.04%;从坡度分级方面来看,>25°和10°~15°坡度级别土壤总库容量最大,分别占研究区土壤水库总库容的41.50%和30.52%;峁坡和沟坡土壤水库库容组成基本相等。
Resumo:
现在全国上下深切关注着黄河的重大问题及其对策。其实问题的根源都出自人们对黄河流域尤其黄土高原自然资源的掠夺式开发 ,形成了“3个恶性循环”:广种薄收 ,薄收更广种 ,虽是罪魁祸首 ,但常反被忽视 ,致使生态环境脆弱 ,人民长期贫困 ;只有下游河床越淤越高 ,防洪大堤越筑越高 ,越高越险和断流历时越来越长 ,上溯速度越来越快 2个恶性循环的危害才使人惊恐。不难看出 ,这是恰与形成黄土高原自然规律完全相悖的人为地质过程的结果。可惜它还未引起人们深入充分的认识 ,难怪一向短缺一个为各家合力共识的治本对策。当今国家将经济发展的重点向中、西部转移 ,并要求重建一个山川秀美的大西北 ,黄土高原的持续开发与治理对策就显得更为举足轻重。由此其各项对策都将面临着转变观念、调整思路、实事求是地进行科学分析和抉择。笔者最近从陆地生态的发生发展及其整个地质历史演变过程的研究中发现 :“土壤水库”的发生发展及其演变是陆地生态发生发展的关键和“动力”,只要维护土壤水库的正常发展就能更好地保卫生态环境。黄土高原地区由于得天独厚的降尘堆积环境条件和持续的成壤过程 ,可使降水具有直接渗入“地下水库”的特殊功能。只要维护住高入渗土壤水库的存在就...
Resumo:
A test system was developed for measuring the pore pressure in porous media, and a new model was devised for the pore pressure testing in both saturated and unsaturated rock-soil. Laboratory experiments were carried out to determine the pore pressure during water level fluctuation. The variations of transient pore pressure vs. time at different locations of the simulated rock-soil system were acquired and processed, and meanwhile the deformation and failure of the model are observed. The experiment results show that whether the porous media are saturated or not, the transient pore pressure is mainly dependent on the water level fluctuation, and coupled with the variation of the stress field.
Sensitivity Analysis of Dimensionless Parameters for Physical Simulation of Water-Flooding Reservoir
Resumo:
A numerical approach to optimize dimensionless parameters of water-flooding porous media flows is proposed based on the analysis of the sensitivity factor defined as the variation ration of a target function with respect to the variation of dimensionless parameters. A complete set of scaling criteria for water-flooding reservoir of five-spot well pattern case is derived from the 3-D governing equations, involving the gravitational force, the capillary force and the compressibility of water, oil and rock. By using this approach, we have estimated the influences of each dimensionless parameter on experimental results and thus sorted out the dominant ones with larger sensitivity factors ranging from10-4to10-0 .
Resumo:
A self-organizing map (SOM) was used to cluster the water quality data of Xiangxi River in the Three Gorges Reservoir region. The results showed that 81 sampling sites could be divided into several groups representing different land use types. The forest dominated region had low concentrations of most nutrient variables except COD, whereas the agricultural region had high concentrations of NO3N, TN, Alkalinity, and Hardness. The sites downstream of an urban area were high in NH3N, NO2N, PO4P and TP. Redundancy analysis was used to identify the individual effects of topography and land use on river water quality. The results revealed that the watershed factors accounted for 61.7% variations of water quality in the Xiangxi River. Specifically, topographical characteristics explained 26.0% variations of water quality, land use explained 10.2%, and topography and land use together explained 25.5%. More than 50% of the variation in most water quality variables was explained by watershed characteristics. However, water quality variables which are strongly influenced by urban and industrial point source pollution (NH3N, NO2N, PO4P and TP) were not as well correlated with watershed characteristics.
Resumo:
Bioavailable water concentrations of polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP) were measured in the water column from Three Gorges Reservoir (TGR) collected in May 2008 using semipermeable membrane devices (SPMDs). The sampling sites spanned the whole reservoir from the upstream Chongqing to the great dam covering more than 600 km long distance with water flow velocities ranging from <0.05 to 1.5 m s(-1). This is the first experience of SPMD application in the biggest reservoir in the world. The results of water sampling rates based on performance reference compounds (PRC) were tested to be significantly correlated with water flow velocities in the big river. Results of back-calculated aqueous concentrations based on PRC showed obvious regional variations of PAH, PCB and OCP levels in the reservoir. Total PAH ranged from 13.8 to 97.2 ng L-1, with the higher concentrations occurring in the region of upstream and near the dam. Phenanthrene, fluoranthene, pyrene and chrysene were the predominant PAH compounds in TGR water. Total PCB ranged from 0.08 to 0.51 ng L-1, with the highest one occurring in the region near the dam. PCB 28, 52, 101, 138, 153, 180, 118 were the most abundant PCB congeners in the water. The total OCP ranged from 2.33 to 3.60 ng L-1 and the levels showed homogenous distribution in the whole reservoir. HCH, DDT and HCB, PeCB were the major compounds of OCP fingerprints. Based on water quality criteria, the TGR water could be designated as being polluted by HCB and PAH. Data on PAH, PCB and OCP concentrations found in this survey can be used as reference levels for future POP monitoring programmes in TGR. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The hydraulic conductivity function of fractures is a key scientific question to describe and reveal the process and the role of water seepage reasonably. In this paper, the generation technology of random fracture network and the latest numerical computation method for equivalent permeability tensor of fracture network are applied to analyze the landslide located at Wangjiayuanzi in Wanzhou District of Chongqing by simulating the changes of the seepage field caused by the running of the Three Gorges Reservoir. The influences of the fracture seepage on the seepage field and stability of the landslide were discussed with emphasis. The results show that the fractures existing in the soil increase the permeability coefficient of the landslide body and reduce the delay time of the underground water level in the landslide which fluctuates relative to the water level of reservoir,that causes the safe coefficient of the slope changes more gently than that of the same slope without fractures. It means, if only water level fluctuating condition is concerned, the fractures existing in the soil plays a positive role to the stability of slopes.
Resumo:
Salt water intrusion occurred frequently during dry season in Modaomen waterway of the Pearl River Estuary. With the development of region's economy and urbanization, the salt tides affect the region's water supply more and more seriously in recent years. Regulation and allocation of freshwater resources of the upper rivers of the estuary to suppress the salt tides is becoming important measures for ensuring the water supply security of the region in dry season. The observation data analysis showed that the flow value at the Wuzhou hydrometric station on the upper Xijiang river had a good correlation with the salinity in Modaomen estuary. Thus the flow rate of Wuzhou has been used as a control variable for suppression of salt tides in Modaomen estuary. However, the runoff at Wuzhou mainly comes from the discharge of Longtan reservoir on the upper reaches of Xijiang river and the runoff in the interval open valley between Longtan and Wuzhou sections. As the long distance and many tributaries as well as the large non-controlled watershed between this two sections, the reservoir water scheduling has a need for reasonable considering of interaction between the reservoir regulating discharge and the runoff process of the interval open watershed while the deployment of suppression flow at Wuzhou requires longer lasting time and high precision for the salt tide cycles. For this purpose, this study established a runoff model for Longtan - Wuzhou interval drainage area and by model calculations and observation data analysis, helped to understand the response patterns of the flow rate at Wuzhou to the water discharge of Longtan under the interval water basin runoff participating conditions. On this basis, further discussions were taken on prediction methods of Longtan reservoir discharge scheduling scheme for saline intrusion suppression and provided scientific and typical implementation programs for effective suppression flow process at the Wuzhou section.
Resumo:
The frequent drawdown of water level of Yangtze River will greatly influence the stability of the widely existing slopes in the Three Gorges reservoir zone, especially those layered ones. Apart from the fluctuating speed of water level, the different geological materials will also play important roles in the failure of slopes. Thus, it must be first to study the mechanism of such a landslide caused by drawdown of water level.A new experimental setup is designed to study the performance of a layered slope under the drawdown of water level. The pattern of landslide of a layered slope induced by drawdown of water level has been explored by means of simulating experiments. The influence of fluctuating speed of water level on the stability of the layered slope is probed,especially the whole process of deformation and development of landslide of the slope versus time. The experimental results show that the slope is stable during the water level rising, and the sliding body occurs in the upper layer of the slope under a certain drawdown speed of water level. In the process of slope failure, some new small sliding body will develop on the main sliding body, and the result is that they speed up the disassembly of the whole slope.Based on the simulating experiment on landslide of a layered slope induced by drawdown of water level, the stress and displacement field of the slope are calculated.The seepage velocity, the pore water pressure, and the gradient of pore water head are also calculated for the whole process of drawdown of water level. The computing results are in good agreement with the experimental results. Accordingly, the mechanism of deformation and landslide of the layered slope induced by drawdown of water level is analyzed. It may provide basis for treating this kind of layered slopes in practical engineering.