113 resultados para Volume holographic lenses

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffraction properties of volume holographic gratings are studied when the gratings are illuminated by an ultrashort pulsed beam with different polarization states. The developed coupled wave theory of Kogelnik is used. Considering the dispersion effect of the grating media, solutions for the diffracted and transmitted intensities, diffraction efficiencies and the bandwidths of the gratings are given in transmission volume holographic gratings and reflection volume holographic gratings. The bandwidths of the gratings are reduced by the dispersion effect of the grating media. They also have different influences on the diffraction of an ultrashort pulsed beam with different polarization states. For different values of the ratio of the spectral bandwidth of the input pulse to that of the grating, the changes of the spectral and temporal distributions of the diffracted intensities, as well as the diffraction efficiencies of the gratings are shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a modified coupled wave theory, the pulse shaping properties of volume holographic gratings (VHGs) in anisotropic media VHGs are studied systematically. Taking photorefractive LiNbO3 crystals as an example, the combined effect that the grating parameters, the dispersion and optical anisotropy of the crystal, the pulse width, and the polarization state of the input ultrashort pulsed beam (UPB) have on the pulse shaping properties are considered when the input UPB with arbitrary polarization state propagates through the VHG. Under the combined effect, the diffraction bandwidth, pulse profiles of the diffracted and transmitted pulsed beams, and the total diffraction efficiency are shown. The studies indicate that the properties of the shaping of the o and e components of the input UPB in the crystal are greatly different; this difference can be used for pulse shaping applications. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the anisotropic diffraction properties of the stratified volume holographic gratings recorded in photorefractive media using the anisotropic coupled wave theory. It is shown that the diffraction efficiency of such system exhibit the uniform periodic Bragg selectivity properties. In addition the dependence of the stratified volume holographic optical elements (SVHOEs) diffraction properties on the buffer-layer thickness, grating-layer thickness, number of modulation layers, and total thickness of system are discussed in detail. (c) 2005 Elsevier GrnbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crystals. The results indicate that the diffracted intensity distributions in the spectral and temporal domains and the diffraction efficiency of the grating are both changed by the polarization state and spectral bandwidth of the input pulsed beam. A method is given of choosing the grating parameters and input conditions to obtain a large variation range of the spectral bandwidth of the diffracted pulsed beam with an appropriate diffraction efficiency. Our study presents a possibility of using a volume holographic grating recorded in anisotropic materials to shape a broadband ultrashort pulsed beam by modulating its polarization state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using modified two- dimensional coupled- wave theory, the diffraction properties of ultrashort pulsed beams with arbitrary temporal profiles are studied with a volume holographic grating. Analytical expressions for the profiles of the transmitted and diffracted beams are obtained. It is shown that the Bragg selectivity bandwidth of the volume grating can be influenced by the geometry parameter. Numerical results are illustrated for three different temporal profiles. For different temporal profiles, the ratios of the diffraction bandwidths to input bandwidths are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional coupled wave theory is extended to systematically investigate the diffraction properties of finite-sized anisotropic volume holographic gratings (VHGs) under ultrashort pulsed beam (UPB) readout. The effects of the grating geometrical size and the polarizations of the recording and readout beams on the diffraction properties are presented, in particular under the influence of grating material dispersion. The wavelength selectivity of the finite-sized VHG is analyzed. The wavelength selectivity determines the intensity distributions of the transmitted and diffracted pulsed beams along the output face of the VHG. The distortion and widening of the diffracted pulsed beams are different for different points on the output face, as is numerically shown for a VHG recorded in a LiNbO3 crystal. The beam quality is analyzed, and the variations of the total diffraction efficiency are shown in relation to the geometrical size of the grating and the temporal width of the readout UPB. In addition, the diffraction properties of the finite-sized and one-dimensional VHG for pulsed and continuous-wave readout are compared. The study shows the potential application of VHGs in controlling spatial and temporal features of UPBs simultaneously. (C) 2007 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anisotropic Bragg diffraction of the volume holographic gratings in photorefractive crystals are investigated based on the model of anisotropic coupled-wave theory. The effect of the initial intensity ratio and the recording angles of the two recording waves on the anisotropic Bragg diffraction properties is discussed. It is shown that both the ratio of the initial intensity and the incident angles of the recording waves are selective action for the anisotropic Bragg diffraction efficiency of the volume holographic gratings, while these two recording conditions are not selective action for the isotropic Bragg diffraction. Furthermore, the Bragg phase matching condition of anisotropic diffraction is analyzed when the recording angles change. (C) 2006 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropic diffraction of uniform plane wave by finite-sized volume holographic grating in photorefractive crystals is considered. It is found that the anisotropic diffraction can take place when some special conditions are satisfied. The diffracted image is obtained in experiment for the anisotropic Bragg diffraction in Fe:LiNbO3 crystals. A coupled wave analysis is presented to study the properties of anisotropic diffraction. An analytical integral solution for the amplitudes of the diffracted beams is submitted. A trade off between high diffraction efficiency and the deterioration of reconstruction fidelity is analyzed. Numerical evaluations also show that the finite-sized anisotropic volume grating exhibits strong angular and wavelength selectivity. All the results are useful for the optimizing design of VHOE based on finite-sized volume grating structures. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multilayer coupled wave theory is extended to systematically investigate the diffraction properties of multilayer volume holographic gratings (MVHGs) under ultrashort laser pulse readout. Solutions for the diffracted and transmitted intensities, diffraction efficiency, and the grating bandwidth are obtained in transmission MVHGs. It is shown that the diffraction characteristics depend not only on the input pulse duration but also on the number and thickness of grating layers and the gaps between holographic layers. This analysis can be implemented as a useful tool to aid with the design of multilayer volume grating-based devices employed in optical communications, pulse shaping, and processing. (C) 2008 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

设计了一种新型的体全息光栅透镜,在一块光学平板(体全息记录材料)内可以将输入光束产生横向传输并聚焦,或对输入光点产生横传的准直.它由一束平面波和一束球面波正交入射到光学平板上干涉形成的.研究了该体全息透镜的光栅间距变化情况,为设计和制备体全息光栅透镜及相关器件提供了理论依据.基于两光束耦合波理论,得到了该光栅透镜的耦合波方程,近似计算了该透镜的衍射效率及其达到高衍射效率时透镜的最佳尺寸.最后,讨论了该透镜在集成光学等领域中的应用.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on the two-dimensional coupled-wave theory, the wavefront conversion between cylindrical and plane waves by local volume holograms recorded at 632.8 nm and reconstructed at 800 nm is investigated. The proposed model can realize the 90 degrees holographic readout at a different readout wavelength. The analytical integral solutions for the amplitudes of the space harmonics of the field inside the transmission geometry are presented. The values of the off-Bragg parameter at the reconstructed process and the diffracted beam's amplitude distribution are analysed. In addition, the dependences of diffraction efficiency on the focal length of the recording cylindrical wave and on the geometrical dimensions of the grating are discussed. Furthermore, the focusing properties of this photorefractive holographic cylindrical lens are analysed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel wideband sensitive dry holographic photopolymer sensitized by rose bengal (RB) and methylene blue (MB) is fabricated, the holographic storage characteristics of which are investigated under different exposure wavelengths. The result shows that the sensitive spectral band exceeds 200 nm in visible light range, the maximum diffraction efficiency under different exposure wavelengths is more than 40% and decreases with the decrease of exposure wavelength, the exposure sensitivity is not change with the exposure wavelength. This photopolymer is appropriate for wavelength multiplexing or multi-wavelength recording in digital holographic storage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Riboflavin is employed as the photosensitizer of a novel photopolyrner material for holographic recording, This material has a broad absorption spectrum range (More than 200nm) due to the addition of this dye. The experimental results show that our material has high diffraction efficiency and large refractive index modulation. The maximum diffraction efficiency of the photopolymer is about 56%. The digital data pages are stored in this medium and the reconstructed data page has a good fidelity, with the bit-error-ratio of about 1.8 X 10(-4). it is found that the photopolymer material is suitable for high-density volume holographic digital storage.