168 resultados para Visco-elastic fluid
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A regular perturbation technique is suggested to deal with the problem of one dimensional stress wave propagation in viscoelastic media with damage. Based upon the first order asymptotic solution obtained, the characteristics of wave attenuation are studied. In fact, there exist three different time-dependent phenomena featuring the dynamic response of the materials, the first expressing the characteristics of wave propagation, the second indicating the innate effect of visco-elastic matrix and the third coming from the time dependent damage. The comparision of first order asymptotic solution with the numerical results calculated by a finite difference procedure shows that the perturbation expansion technique may offer a useful approach to the problem concerned.
Resumo:
Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3-trifluoro-methylbenzene side group (F-PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK-rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G' is larger than dynamic loss modulus G", showing the feature of elastic fluid. For F-PAEK-rich systems, the rheological behavior of the blends has a resemblance to pure F-PAEK, i.e., G" is greater than G', showing the characteristic of viscous fluid. When the PEEK content is in the range of 50-70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F-PAEK content. However, at 50% weight fraction of PEEK, the viscosity-composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition.
Resumo:
The vibration analysis of an elastic container with partially filled fluid was investigated in this paper. The container is made of a thin cylinder and two circular plates at the ends. The axis of the cylinder is in the horizontal direction. It is difficult to solve this problem because the complex system is not axially symmetric. The equations of motion for this system were derived. An incompressible and ideal fluid model is used in the present work. Solutions of the equations were obtained by the generalized variational method. The solution was expressed in a series of normalized generalized Fourier's functions. This series converged rapidly, and so its approximate solution was obtained with high precision. The agreement of the calculated values with the experimental result is good. It should be mentioned that with our method, the computer time is less than that with the finite-element method.
Resumo:
In this article the UDF script file in the Fluent software was rewritten as the "connecting file" for the Fluent and the ANSYS/ABAQUS in order that the joined file can be used to do aero-elastic computations. In this way the fluid field is computed by solving the Navier-Stokes equations and the structure movement is integrated by the dynamics directly. An analysis of the computed results shows that this coupled method designed for simulating aero-elastic systems is workable and can be used for the other fluid-structure interaction problems.
Resumo:
A theoretical analysis of instability of saturated soil is presented considering the simple shearing of a heat conducting thermo-visco-plastic material. It is shown that the instability is mainly the consequence of thermal softening which overcomes the strain hardening and the other type of instability is controlled by strain softening. The effects of other factors such as permeability to the instability are discussed in this paper.
Resumo:
Using dimensional analysis and finite element calculations we derive several scaling relationships for conical indentation into elastic-perfectly plastic solids. These scaling relationships provide new insights into the shape of indentation curves and form the basis for understanding indentation measurements, including nano- and micro-indentation techniques. They are also helpful as a guide to numerical and finite element calculations of conical indentation problems. Finally, the scaling relationships are used to reveal the general relationships between hardness, contact area, initial unloading slope, and mechanical properties of solids.
Resumo:
An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.
Resumo:
The multi-layers feedforward neural network is used for inversion of material constants of fluid-saturated porous media. The direct analysis of fluid-saturated porous media is carried out with the boundary element method. The dynamic displacement responses obtained from direct analysis for prescribed material parameters constitute the sample sets training neural network. By virtue of the effective L-M training algorithm and the Tikhonov regularization method as well as the GCV method for an appropriate selection of regularization parameter, the inverse mapping from dynamic displacement responses to material constants is performed. Numerical examples demonstrate the validity of the neural network method.
Resumo:
The relationship is determined between saturated duration of rectangular pressure pulses applied to rigid, perfectly plastic structures and their fundamental periods of elastic vibration. It is shown that the ratio between the saturated duration and the fundamental period of elastic vibration of a structure is dependent upon two factors: the first one is the slenderness or thinness ratio of the structure; and the second one is the square root of ratio between the Young's elastic modulus and the yield stress of the structural material. Dimensional analysis shows that the aforementioned ratio is one of the basic similarity parameters for elastic-plastic modeling under dynamic loading.
Resumo:
Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.
Resumo:
The gradient elastic constitutive equation incorporating the second gradient of the strains is used to determine the monochromatic elastic plane wave propagation in a gradient infinite medium and thin rod. The equation of motion, together with the internal material length, has been derived. Various dispersion relations have been determined. We present explicit expressions for the relationship between various wave speeds, wavenumber and internal material length.
Resumo:
In this paper, we study the relationship between the pull-off force and the transition parameter (or Tabor number) as well as the variation of the pull-off radius with the transition parameter in the adhesion elastic contact. Hysteresis models are presented to describe the contact radius as a function of external loads in loading and unloading processes. Among these models, we verified the hysteresis model from Johnson{Kendall{Roberts theory, based on which the calculated results are in good agreement with experimental ones.
Resumo:
In this paper, a systematic approach is proposed to obtain the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC). The strain energy density of PRC is analyzed based on the cell model, and Che analytical formula for the macro-constitutive relation of PRC is obtained. The strength effects of volume fraction of the particle and the strain hardening exponent of matrix material on the macro-constitutive relation are investigated, the relation curve of strain versus stress of PRC is calculated in detail. The present results are consistent; with the results given in the existing references.
Resumo:
The work done during indentation is examined using dimensional analysis and finite element calculations for conical indentation in elastic-plastic solids with work hardening. An approximate relationship between the ratio of hardness to elastic modulus and the ratio of irreversible work to total work in indentation is found. Consequently, the ratio of hardness to elastic modulus may be obtained directly from measuring the work of indentation. Together with a well-known relationship between elastic modulus, initial unloading slope, and contact area, a new method is then suggested for estimating the hardness and modulus of solids using instrumented indentation with conical or pyramidal indenters.