182 resultados para Virulence genes

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Edwardsiella tarda is a Gram-negative enteric pathogen that causes disease in both humans and animals. Recently, a type III secretion system (T3SS) has been found to contribute to Ed. tarda pathogenesis. EseB, EseC and EseD were shown to be secreted by the T3SS and to be the major components of the extracellular proteins (ECPs). Based on sequence similarity, they have been proposed to function as the 'translocon' of the T3SS needle structure. In this study, it was shown that EseB, EseC and EseD formed a protein complex after secretion, which is consistent with their possible roles as translocon components. The secretion of EseB and EseD was dependent on EscC (previously named Orf2). EscC has the characteristics of a chaperone; it is a small protein (13 kDa), located next to the translocators in the T3SS gene cluster, and has a coiled-coil structure at the N-terminal region as predicted by COILS. An in-frame deletion of escC abolished the secretion of EseB and EseD, and complementation of Delta escC restored the export of EseB and EseD into the culture supernatant. Further studies showed that EscC is not a secreted protein and is located on the membrane and in the cytoplasm. Mutation of escC did not affect the transcription of eseB but reduced the amount of EseB as measured by using an EseB-LacZ fusion protein in Ed. tarda. Co-purification studies demonstrated that EscC formed complexes with EseB and EseD. The results suggest that EscC functions as a T3SS chaperone for the putative translocon components EseB and EseD in Ed. tarda.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To investigate the effect of copper on the virulence of Edwardsiella tarda. Methods and Results: The pathogenic Edw. tarda strain TX5 was cultured under copper-stressed conditions and examined for any potential alteration in capacities that are associated with pathogenicity. The results showed that compared to untreated TX5, Cu-treated TX5 exhibits reduced planktonic and biofilm growth, an impaired ability to adhere to host mucus, modulation of host immune response, and dissemination in host blood and liver. Consistent with these observations, the overall bacterial virulence of Cu-treated TX5 is significantly attenuated. SDS-PAGE analyses of whole cell protein production showed that Cu-treated TX5 differs from the untreated TX5 in its production of at least one protein. Quantitative real time reverse transcriptase PCR analyses showed that copper treatment decreased the expression of virulence-associated genes encoding components of the type III and type VI secretion systems, the Eth haemolysin system, and the LuxS/AI-2 quorum-sensing system. Conclusions: Prolonged exposure to copper has multiple effects on TX5 and results in significant attenuation of bacterial virulence. Significance and Impact of the Study: The results of this study demonstrate that copper treatment has a broad and profound effect on the virulence-associated capacities of TX5, which is exerted at least in part at the transcription level. These findings provide new insights to the antimicrobial mechanism of copper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Edwardsiella tarda is a gram-negative pathogen with a broad host range that includes humans, animals, and fish. Recent studies have shown that the LuxS/autoinducer type 2 (AI-2) quorum sensing system is involved in the virulence of E. tarda. In the present study, it was found that the E. tarda LuxS mutants bearing deletions of the catalytic site (C site) and the tyrosine kinase phosphorylation site, respectively, are functionally inactive and that these dysfunctional mutants can interfere with the activity of the wild-type LuxS. Two small peptides, 5411 and 5906, which share sequence identities with the C site of LuxS, were identified. 5411 and 5906 proved to be inhibitors of AI-2 activity and could vitiate the infectivity of the pathogenic E. tarda strain TX1. The inhibitory effect of 5411 and 5906 on AI-2 activity is exerted on LuxS, with which these peptides specifically interact. The expression of 5411 and 5906 in TX1 has multiple effects (altering biofilm production and the expression of certain virulence-associated genes), which are similar to those caused by interruption of luxS expression. Further study found that it is very likely that 5411 and 5906 can be released from the strains expressing them and, should TX1 be in the vicinity, captured by TX1. Based on this observation, a constitutive 5411 producer (Pseudomonas sp. strain FP3/pT5411) was constructed in the form of a fish commensal isolate that expresses 5411 from a plasmid source. The presence of FP3/pT5411 in fish attenuates the virulence of TX1. Finally, it was demonstrated that fish expressing 5411 directly from tissues exhibit enhanced resistance against TX1 infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Edwardsiella tarda is a gram-negative pathogen with a broad host range that includes humans, animals, and fish. Recent studies have shown that the LuxS/autoinducer type 2 (AI-2) quorum sensing system is involved in the virulence of E. tarda. In the present study, it was found that the E. tarda LuxS mutants bearing deletions of the catalytic site (C site) and the tyrosine kinase phosphorylation site, respectively, are functionally inactive and that these dysfunctional mutants can interfere with the activity of the wild-type LuxS. Two small peptides, 5411 and 5906, which share sequence identities with the C site of LuxS, were identified. 5411 and 5906 proved to be inhibitors of AI-2 activity and could vitiate the infectivity of the pathogenic E. tarda strain TX1. The inhibitory effect of 5411 and 5906 on AI-2 activity is exerted on LuxS, with which these peptides specifically interact. The expression of 5411 and 5906 in TX1 has multiple effects (altering biofilm production and the expression of certain virulence-associated genes), which are similar to those caused by interruption of luxS expression. Further study found that it is very likely that 5411 and 5906 can be released from the strains expressing them and, should TX1 be in the vicinity, captured by TX1. Based on this observation, a constitutive 5411 producer (Pseudomonas sp. strain FP3/pT5411) was constructed in the form of a fish commensal isolate that expresses 5411 from a plasmid source. The presence of FP3/pT5411 in fish attenuates the virulence of TX1. Finally, it was demonstrated that fish expressing 5411 directly from tissues exhibit enhanced resistance against TX1 infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Genes uniquely expressed in vivo may contribute to the overall pathogenicity of an organism and are likely to serve as potential targets for the development of new vaccine. This study aims to screen the genes expressed in vivo after Vibrio anguillarum infection by in vivo-induced antigen technology (IVIAT). Methods and Results: The convalescent-phase sera were obtained from turbot (Scophthalmus maximus) survived after infection by the virulent V. anguillarum M3. The pooled sera were thoroughly adsorbed with M3 cells and Escherichia coli BL21 (DE3) cells. A genomic expression library of M3 was constructed and screened for the identification of immunogenic proteins by colony immunoblot analysis with the adsorbed sera. After three rounds of screening, 19 putative in vivo-induced (ivi) genes were obtained. These ivi genes were catalogued into four functional groups: regulator/signalling, metabolism, biological process and hypothetical proteins. Three ivi genes were insertion-mutated, and the growth and 50% lethal dose (LD50) of these mutants were evaluated. Conclusions: The identification of ivi genes in V. anguillarum M3 sheds light on understanding the bacterial pathogenesis and provides novel targets for the development of new vaccines and diagnostic reagents. Significance and Impact of the Study: To the best of our knowledge, this is the first report describing in vivo-expressed genes of V. anguillarum using IVIAT. The screened ivi genes in this study could be new virulent factors and targets for the development of vaccine, which may have implications for the development of diagnostic regents.