3 resultados para Vehicle obstacle detection

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

随着智能机器人系统的发展,机器人的在线感知能力日益受到重视。障碍物检测能力是机器人在线感知能力的一个重要组成部分。因视觉传感器具有独特优势,基于视觉的障碍物检测方法成为目前关注的重点。 室外非结构化环境因结构复杂,机器人缺乏可有效利用的先验知识描述,导致众多障碍物检测系统在该环境中不能有效工作。本文采用全局-局部策略对场景进行由粗到精的分析,弥补室外非结构化环境先验知识不足的难题,提高机器人的在线感知能力。根据该策略,本文在基于视差图的障碍物检测系统框架中,引入视差投影图模块,提出了基于视差投影图的障碍物检测系统框架。该框架在视差投影图模块中全局分析场景视差分布水平,在立体匹配模块中局部分析场景前景目标的几何轮廓信息。依据该框架,针对实际应用中遇到的各种问题,提出了工作于室外非结构化环境的障碍物检测算法。该算法具有如下特点: 1、通过分析视差投影图的地面关联线信息,获得场景的视差分布水平。该信息一方面用来动态更改匹配算法的视差搜索范围,增强算法的实时性和鲁棒性;另一方面用来移除背景地表,简化障碍物分割过程; 2、采用双域滤波抑制噪声,获得清晰的边缘特征,降低立体匹配算法在深度不连续性区域的匹配难度; 3、借助逆向重投影的思想重采样扫描图像,在立体匹配前等效地实现了立体匹配过程中动态变更视差搜索范围的操作; 4、采用基于连通成分的扩散方法替代传统的SAD局部匹配算法,获得高质量的视差图,最终改善障碍物检测的精确性。 在室外非结构化环境中,本文对该算法进行了实验验证。通过设置不同的基线长度,验证了算法在不同的感知距离内的有效性。经实验证明,本算法在一定距离范围内能够有效的检测出障碍物。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

说明了像平面与空间平面的变换以及摄像机在固定,旋转和平移时变换矩阵的求解方法.还讨论了该变换在移动机器人定位,障碍物检测,运动参数分析和三维坐标计算上的应用。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the ground target detection, classification and sensor fusion problems in distributed fiber seismic sensor network. Compared with conventional piezoelectric seismic sensor used in UGS, fiber optic sensor has advantages of high sensitivity and resistance to electromagnetic disturbance. We have developed a fiber seismic sensor network for target detection and classification. However, ground target recognition based on seismic sensor is a very challenging problem because of the non-stationary characteristic of seismic signal and complicated real life application environment. To solve these difficulties, we study robust feature extraction and classification algorithms adapted to fiber sensor network. An united multi-feature (UMF) method is used. An adaptive threshold detection algorithm is proposed to minimize the false alarm rate. Three kinds of targets comprise personnel, wheeled vehicle and tracked vehicle are concerned in the system. The classification simulation result shows that the SVM classifier outperforms the GMM and BPNN. The sensor fusion method based on D-S evidence theory is discussed to fully utilize information of fiber sensor array and improve overall performance of the system. A field experiment is organized to test the performance of fiber sensor network and gather real signal of targets for classification testing.