34 resultados para Vase-painting, Greco-Roman.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die swell is an important, phenomenon. in polymer processing, and is explained usually by rheological properties of the fluid. Because of the nonuniform of temperature distribution on the free surface of the liquid jet, the thermo capillary convection driven by surface tension gradient exists. The rheological fluid flowing out of a die and painting on a moving solid wall is studied by the numerical finite element method of a two-dimensional and unsteady model in the present paper, and both the rheological effect of a non-Newtonian fluid and the thermocapillary effect are considered. The results show that both,effects; will enlarge the cross-section of the fluid jet, and the rheological effect of non-Newtonian fluid dominates the process in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used a combination of chromosome sorting, degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), chromosome painting and digital image capturing and processing techniques for comparative chromosome analysis of members of the genus Muntiacus. Chromosome-specific ''paints'' from a female Indian muntjac were hybridised to the metaphase chromosomes of the Gongshan, Black, and Chinese muntjac by both single and three colour chromosome painting. Karyotypes and idiograms for the Indian, Gongshan, Black and Chinese muntjac were constructed, based on enhanced 4', 6-diamidino-2-phenylindole (DAPI) banding patterns. The hybridisation signal for each paint was assigned to specific bands or chromosomes for all of the above muntjac species. The interspecific chromosomal homology was demonstrated by the use of both enhanced DAPI banding and comparative chromosome painting. These results provide direct molecular cytogenetic evidence for the tandem fusion theory of the chromosome evolution of muntjac species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The black muntjac (Muntiacus crinifrons) has an unusual karyotype of 2n = 8 in females and 2n = 9 in males. We have studied the evolution of this karyotype by hybridising chromosome-specific paints derived from flow-sorted chromosomes of the Chinese muntjac (M. reevesi, 2n = 46) to chromosomes of the black muntjac. The hybridisation pattern allowed us to infer chromosomal homologies between these two species. Tandem and centromeric fusions, reciprocal translocations, and insertions are involved in the reduction of the diploid number from 2n = 46 to 2n = 8, 9. The painting patterns further show complex chromosomal rearrangements in the male black muntjac which involve more than half the karyotype, including both sex chromosomes. Since early meiosis is reported to be normal without any visible inversion loops of the synaptonemal complex, the observed chromosomal rearrangements would lead to heterosynapsis and, therefore, leave a large fraction of the male black muntjac karyotype balanced between the two sexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal homologies were established between human and two Chinese langurs (Semnopithecus francoisi, 2n=44, and S. phayrei, 2n=44) by chromosome painting with chromosome-specific DNA probes of all human chromosomes except the Y. Both langur species showed identical hybridization patterns in addition to similar G-banding patterns. In total, 23 human chromosome-specific probes detected 30 homologous chromosome segments in a haploid langur genome. Except for human chromosomes 1, 2, 6, 16 and 19 probes, which each gave signals on two non-homologous langur chromosomes respectively, all other probes each hybridized to a single chromosome. The results indicate a high degree of conservation of chromosomal synteny between human and these two Chinese langurs. The human chromosome 2 probe painted the entire euchromatic regions of langur chromosomes 14 and 19. Human chromosome 1 probe hybridized to three regions on langur autosomes, one region on langur chromosome 4 and two regions on langur chromosome 5. Human 19 probe hybridized on the same pattern to one region on chromosome 4 and to two regions on langur chromosome 5, where it alternated with the human chromosome 1 probe. Human 6 and 16 probes both hybridized to one region on each of the two langur autosomes 15 and 18. Only two langur chromosomes (12 and 21) were each labelled by probes specific for two whole human chromosomes (14 and 15 and 21 and 22 respectively). Comparison of the hybridization patterns of human painting probes on these two langurs with the data on other Old World primates suggests that reciprocal and Robertsonian translocations as will as inversions could have occurred since the divergance of human and the langurs from a common ancestor. This comparison also indicates that Asian colobines are karyotypically more closely related to each other that to African colobines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Domestic cats and dogs are important companion animals and model animals in biomedical research. The cat has a highly conserved karyotype, closely resembling the ancestral karyotype of mammals, while the dog has one of the most extensively rearranged mammalian karyotypes investigated so far. We have constructed the first detailed comparative chromosome map of the domestic dog and cat by reciprocal chromosome painting. Dog paints specific for the 38 autosomes and the X chromosomes delineated 68 conserved chromosomal segments in the cat, while reverse painting of cat probes onto red fox and dog chromosomes revealed 65 conserved segments. Most conserved segments on cat chromosomes also show a high degree of conservation in G-banding patterns compared with their canine counterparts. At least 47 chromosomal fissions (breaks), 25 fusions and one inversion are needed to convert the cat karyotype to that of the dog, confirming that extensive chromosome rearrangements differentiate the karyotypes of the cat and dog. Comparative analysis of the distribution patterns of conserved segments defined by dog paints on cat and human chromosomes has refined the human/cat comparative genome map and, most importantly, has revealed 15 cryptic inversions in seven large chromosomal regions of conserved synteny between humans and cats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete sets of chromosome-specific painting probes, derived from flow-sorted chromosomes of human (HSA), Equus caballus (ECA) and Equus burchelli (EBU) were used to delineate conserved chromosomal segments between human and Equits burchelli, and among four equid species, E. przewalskii (EPR), E. caballus, E. burchelli and E. zebra hartmannae (EZH) by cross-species chromosome painting. Genome-wide comparative maps between these species have been established. Twenty-two human autosomal probes revealed 48 conserved segments in E. burchelli. The adjacent segment combinations HSA3/21, 7/16p, 16q/19q, 14/15, 12/22 and 4/8, presumed ancestral syntenies for all eutherian mammals, were also found conserved in E. burchelli. The comparative maps of equids allow for the unequivocal characterization of chromosomal rearrangements that differentiate the karyotypes of these equid species. The karyotypes of E. przewalskii and E. caballus differ by one Robertsonian translocation (ECA5 = EPR23 + EPR24); numerous Robertsonian translocations and tandem fusions and several inversions account for the karyotypic differences between the horses and zebras. Our results shed new light on the karyotypic evolution of Equidae. Copyright (C) 2003 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conserved chromosomal segments in the black rhinoceros, Diceros bicornis (DB1, 2n = 84), and its African sister-species the white rhinoceros, Ceratotherim simum (CSI, 2n = 82), were detected using Burchell's zebra (Equus burchellii, EBU, 2n = 44) chromosome-specific painting probes supplemented by a subset of those developed for the horse (Equus caballus, ECA, 2n = 64). In total 41 and 42 conserved autosomal segments were identified in C simum and D. bicornis respectively. Only 21 rearrangements (20 fissions and I fusion) are necessary to convert the Burchell's zebra karyotype into that of the white rhinoceros. One fission distinguishes the D. bicornis and C simum karyotypes which, excluding hetero- chromatic differences, are identical in all respects at this level of resolution. Most Burchell's zebra chromosomes correspond to two rhinoceros chromosomes although in four instances (EBU 18, 19, 20 and 21) whole chromosome synteny has been retained among these species. In contrast, one rhinoceros chromosome (DBI1, CSI1) comprises two separate Burchell's zebra chromosomes (EBU11 and EBU17). In spite of the high diploid numbers of the two rhinoceros species their karyotypes are surprisingly conserved offering a glimpse of the putative ancestral perissodactyl condition and a broader understanding of genome organization in mammals. Copyright (C) 2003 S. Karger AG, Base

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Afrotheria, a supraordinal grouping of mammals whose radiation is rooted in Africa, is strongly supported by DNA sequence data but not by their disparate anatomical features. We have used flow-sorted human, aardvark, and African elephant chromosome painting probes and applied reciprocal painting schemes to representatives of two of the Afrotherian orders, the Tubulidentata (aardvark) and Proboscidea (elephants), in an attempt to shed additional light on the evolutionary affinities of this enigmatic group of mammals. Although we have not yet found any unique cytogenetic signatures that support the monophyly of the Afrotheria, embedded within the aardvark genome we find the strongest evidence yet of a mammalian ancestral karyotype comprising 2n = 44. This karyotype includes nine chromosomes that show complete conserved synteny to those of man, six that show conservation as single chromosome arms or blocks in the human karyotype but that occur on two different chromosomes in the ancestor, and seven neighbor-joining combinations (i.e., the synteny is maintained in the majority of species of the orders studied so far, but which corresponds to two chromosomes in humans). The comparative chromosome maps presented between human and these Afrotherian species provide further insight into mammalian genome organization and comparative genomic data for the Afrotheria, one of the four major evolutionary clades postulated for the Eutheria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With complete sets of chromosome-specific painting probes derived from flow-sorted chromosomes of human and grey squirrel (Sciurus carolinensis), the whole genome homologies between human and representatives of tree squirrels (Sciurus carolinensis, Callosciurus erythraeus), flying squirrels (Petaurista albiventer) and chipmunks (Tamias sibiricus) have been defined by cross-species chromosome painting. The results show that, unlike the highly rearranged karyotypes of mouse and rat, the karyotypes of squirrels are highly conserved. Two methods have been used to reconstruct the genome phylogeny of squirrels with the laboratory rabbit (Oryctolagus cuniculus) as the out-group: ( 1) phylogenetic analysis by parsimony using chromosomal characters identified by comparative cytogenetic approaches; ( 2) mapping the genome rearrangements onto recently published sequence-based molecular trees. Our chromosome painting results, in combination with molecular data, show that flying squirrels are phylogenetically close to New World tree squirrels. Chromosome painting and G-banding comparisons place chipmunks ( Tamias sibiricus), with a derived karyotype, outside the clade comprising tree and flying squirrels. The superorder Glires (order Rodentia + order Lagomorpha) is firmly supported by two conserved syntenic associations between human chromosomes 1 and 10p homologues, and between 9 and 11 homologues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have made a complete set of painting probes for the domestic horse by degenerate oligonucleotide-primed PCR amplification of flow-sorted horse chromosomes. The horse probes, together with a full set of those available for human, were hybridized onto metaphase chromosomes of human, horse and mule. Based on the hybridization results, we have generated genome-wide comparative chromosome maps involving the domestic horse, donkey and human. These maps define the overall distribution and boundaries of evolutionarily conserved chromosomal segments in the three genomes. Our results shed further light on the karyotypic relationships among these species and, in particular, the chromosomal rearrangements that underlie hybrid sterility and the occasional fertility of mules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the hybridization of mouse chromosomal paints to Apodemus sylvaticus, the long-tailed field mouse. The mouse paints detected 38 conserved segments in the Apodemus karyotype. Together with the species reported here there are now six species of rodents mapped with Mus musculus painting probes. A parsimony analysis indicated that the syntenies of nine M. musculus chromosomes were most likely already formed in the muroid ancestor: 3, 4, 7, 9, 14, 18, 19, X and Y. The widespread occurrence of syntenic segment associations of mouse chromosomes 1/17, 2/13, 7/19, 10/17, 11/16, 12/17 and 13/15 suggests that these associations were ancestral syntenies for muroid rodents. The muroid ancestral karyotype probably had a diploid number of about 2n = 54. It would be desirable to have a richer phylogenetic array of species before any final conclusions are drawn about the Muridae ancestral karyotype. The ancestral karyotype presented here should be considered as a working hypothesis. Copyright (C) 2004 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross-species painting (fluorescence in situ hybridization) with 23 human (Homo sapiens (HSA)) chromosome-specific painting probes (HSA 1-22 and the X) was used to delimit regions of homology on the chromosomes of the golden mole (Ghrysochloris asiaticus) and elephant-shrew (Elephantulus rupestris). A cladistic interpretation of our data provides evidence of two unique associations, HSA 1/19p and 5/21/3, that support Afrotheria. The recognition of HSA 5/3/21 expands on the 3/21 synteny originally designated as an ancestral state for all eutherians. We have identified one adjacent segment combination (HSA2/8p/4) that is supportive of Afroinsectiphillia (aardvark, golden mole, elephant-shrew). Two segmental combinations (HSA 10q/17 and HSA 3/20) unite the aardvark and elephant-shrews as sister taxa. The finding that segmental syntenies in evolutionarily distant taxa can improve phylogenetic resolution suggests that they may be useful for testing sequence-based phylogenies of the early eutherian mammals. They may even suggest clades that sequence trees are not recovering with any consistency and thus encourage the search for additional rare genomic changes among afrotheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal homologies have been established between the Chinese muntjac (Muntiacus reevesi, MRE, 2n = 46) and five ovine species: wild goat (Capra aegagrus, CAE, 2n = 60), argall (Ovis ammon, OAM, 2n = 56), snow sheep (Ovis nivicola, ONI, 2n = 52), red goral (Naemorhedus cranbrooki, NCR, 2n = 56) and Sumatra serow (Capricornis sumatraensis, CSU, 2n = 48) by chromosome painting with a set of chromosome-specific probes of the Chinese muntjac. In total, twenty-two Chinese muntjac autosomal painting probes detected thirty-five homologous segments in the genome of each species. The chromosome X probe hybridized to the whole X chromosomes of all ovine species while the chromosome Y probe gave no signal. Our results demonstrate that almost all homologous segments defined by comparative painting show a high degree of conservation in G-banding patterns and that each speciation event is accompanied by specific chromosomal rearrangements. The combined analysis of our results and previous cytogenetic and molecular systematic results enables us to map the chromosomal rearrangements onto a phylogenetic tree, thus providing new insights into the karyotypic evolution of these species.