10 resultados para Varro, Marcus Terentius.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Ab initio / Rice-Ramsperger-Kassel-Marcus approach to carbon nitride formation: CH3NH2 decomposition
Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland
Resumo:
介绍了利用极谱法测定凤眼莲 (Eichhorniacras sipesSolm .)、菰 (Zizanialatifolia (Geiseb)Stapf)、石菖蒲(AcorustartarinowiiSchott)、慈菇 (SagitarriasagittifoliaLinn .)、香蒲 (TyphaangustifoliaLinn .)等多种湿生植物根系在无氧介质中氧气的对外扩散速率 (ODR)。实验结果表明 ,对于同种植物而言 ,新生根较老根的氧气扩散速率快。根尖区 (约 0~ 5mm范围内 )氧气扩
Resumo:
液/液界面通常被看作是人工膜和生物膜的简单模型,液界面电分析化学的主要研究对象是界面上的电荷(电子和离子)转移反应以及伴随发生的相关化学反应。本论文简要回顾了液/液界面电分析化学的发展历程,介绍了液/液界面上电分析化学的基本理论。目前,应用扫描电化学显微镜结合微、纳米电极技术研究液/液界面上的电荷转移反应是电分析化学领域的研究热点之一。本文在本实验室以往研究工作的基础上,将扫描电化学显微镜、微、纳米管技术和各种电化学方法相结合,一方面进一步深入研究了在可极化液/液界面上、高驱动力作用下的加速离子转移反应的动力学,另一方面探讨了支持电解质浓度对简单及加速离子在低离子强度溶液相间的转移反应的影响。主要结果如下:1.通过选择适当的研究模型(二苯基18冠6加速Na+、Li+在水1/2-二氯乙烷界面上的转移反应)、实验条件及将三电极系统、纳米管与扫描电化学显微镜相结合,进一步研究了加速离子转移反应的驱动力与异相反应速率常数之间的关系。由实验得到,加速离子转移反应的速率常数匆与反应驱动力直接相关。在低驱动力区,Inkf与驱动力的关系遵循经典的Butier~Voh“方程;高马时力区,反应的动力学逐渐进入Marcus翻转区,即反应的速率常数随驱动力的增加而减小,此与Marcus 理论相一致。本实验是第一次在加速离子转移反应中观察到Marcus翻转现象。2.应用循环伏安法、方波法、计时安培法和微/纳米管技术研究了加速钾离子从水相向高阻抗有泪毛相转移的反应。同时系统讨论了低浓度电解质对水相及有机相TMA~+简单离子转移反应的影响。实验中绷门发现纳米管可被用子有机相无外加支持电解质的加速离子转移反应的研究。而在含少量或不含电解质的两相间的TMA+离子转移反应中,可以清楚的观察到迁移在TMA+转移过程中所起的作用。另外也较详细讨论了简单离子在界面转移的机理。
Resumo:
Quantum-chemistry methods were explored to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of blue-emitting Ir(III) complexes {[(F-2-ppy)(2)Ir(pta -X/pyN4)], where F-2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = phenyl(1); p-tolyl (2); 2,6-difluororophenyl (3); -CF3 (4), and pyN4 = pyridine-1,2,4-tetrazolate (5)}, which are used as emitters in organic light-emitting diodes (OLEDs). The mobility of hole and electron were studied computationally based on the Marcus theory. Calculations of Ionization potentials (IPs) and electron affinities (EAs) were used to evaluate the injection abilities of holes and electrons into these complexes.
Resumo:
The kinetics of facilitated ion-transfer (FIT) reactions at high driving force across the water/1,2-dichloroethane (W/DCE) interface is investigated by scanning electrochemical microscopy (SECM). The transfers of lithium and sodium ions facilitated by dibenzo-18-crown-6 (DB18C6) across the polarized W/DCE interface are chosen as model systems because they have the largest potential range that can be controlled externally. By selecting the appropriate ratios of the reactant concentrations (Kr c(M)+/c(DB18C6)) and using nanopipets as the SECM tips, we obtained a series of rate constants (k(f)) at various driving forces (Delta(O)(W) phi(ML+)(0') - Es, Delta(O)(W) phi(ML+)(0') is the formal potential of facilitated ion transfer and Es is the potential applied externally at the substrate interface) based on a three-electrode system. The FIT rate constants k(f) are found to be dependent upon the driving force. When the driving force is low, the dependence of 1n k(f) on the driving force is linear with a transfer coefficient of about 0.3. It follows the classical Butler-Volmer theory and then reaches a maximum before it decreases again when we further increase the driving forces. This indicates that there exists an inverted region, and these behaviors have been explained by Marcus theory.
Resumo:
In the present work a nonmonotonic dependence of standard rate constant (k(0)) on reorganization energy (lambda) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k(0) on lambda is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of lambda, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the lambda dependence of k(0) for Process I is monotonic thoroughly, while for Process II on electrode surface the lambda dependence of k(0) could show a nonmonotonicity.
Resumo:
The characteristic electrochemical mechanics of azobenzene derivative self-assembled monolayers is discussed in present paper. It is presented that the structure inhibition is one of the most important factors in the increase of electrochemical reactive energy. A corresponding mathematical model was established based on Levich and Marcus's theory. Moreover, computational program was written to simulate the decrease of apparent rate constant (k(app)) of electron transfer with increasing surface concentration.
Resumo:
The noble gas nuclide abundances and isotopic ratios of the upmost layer of Fe-Mn crusts from the western and central Pacific Ocean have been determined. The results indicate that the He and Ar nuclide abundances and isotopic ratios can be classified into two types: low He-3/He-4 type and high He-3/He-4 type. The low He-3/He-4 type is characterized by high He-4 abundances of 191x10(-9) cm(3.)STP(.)g(-1) on average, with variable He-4, Ne-20 and Ar-40 abundances in the range (42.8-421)x10(-9) cm(3.)STP(.)g(-1), (5.40-141)x10(-9)cm(3.)STP(.)g(-1), and (773-10976)x10(-9) cm(3.)STP(.)g(-1), respectively. The high He-3/He-4 samples are characterized by low He-4 abundances of 11.7x10(-9) cm(3.)STP(.)g(-1) on average, with He-4, Ne-20 and Ar-40 abundances in the range of (7.57-17.4)x10(-9) cm(3.)STP(.)g(-1), (110.4-25.5)x10(-9) cm(3.)STP(.)g(-1) and (5354-9050)x10(-9) cm(3.)STP(.)g(-1), respectively. The low He-3/He-4 samples have He-3/He-4 ratios (with RIRA ratios of 2.04-2.92) which are lower than those of MORB (R/R-A=8 +/- 1) and Ar-40/Ar-36 ratios (447-543) which are higher than those of air (295.5). The high He-3/He-4 samples have He-3/He-4 ratios (with R/R-A ratios of 10.4-12.0) slightly higher than those of MORB (R/R-A=8 +/- 1) and Ar-40/Ar-36 ratios (293-299) very similar to those of air (295.5). The Ne isotopic ratios (Ne-20/Ne-22 and Ne-21/Ne-22 ratios of 10.3-10.9 and 0.02774-0.03039, respectively) and the Ar-38/Ar-36 ratios (0.1886-0.1963) have narrow ranges which are very similar to those of air (the Ne-20/Ne-22, Ne-21/Ne-22, Ar-38/Ar-36 ratios of 9.80, 0.029 and 0.187, respectively), and cannot be differentiated into different groups. The noble gas nuclide abundances and isotopic ratios, together with their regional variability, suggest that the noble gases in the Fe-Mn crusts originate primarily from the lower mantle. The low He-3/He-4 type and high He-3/He-4 type samples have noble gas characteristics similar to those of HIMU (High U/Pb Mantle)- and EM (Enriched Mantle)-type mantle material, respectively. The low He-3/He-4 type samples with HIMU-type noble gas isotopic ratios occur in the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain and the Mid-Pacific Seamounts whereas the high He-3/He-4 type samples with EM-type noble gas isotopic ratios occur in the Line Island Chain. This difference in noble gas characteristics of these crust types implies that the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain, and the Mid-Pacific Seamounts originated from HIMU-type lower mantle material whereas the Line Island Chain originated from EM-type lower mantle material. This finding is consistent with variations in the Pb-isotope and trace element signatures in the seamount lavas. Differences in the mantle surce may therefore be responsible for variations in the noble gas abundances and isotopic ratios in the Fe-Mn crusts. Mantle degassing appears to be the principal factor controlling noble gas isotopic abundances in Fe-Mn crusts. Decay of radioactive isotopes has a negligible influence on the nuclide abundances and isotopic ratios of noble gases in these crusts on the timescale of their formation.