161 resultados para Variable Velocity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Only the first- order Doppler frequency shift is considered in current laser dual- frequency interferometers; however; the second- order Doppler frequency shift should be considered when the measurement corner cube ( MCC) moves at high velocity or variable velocity because it can cause considerable error. The influence of the second- order Doppler frequency shift on interferometer error is studied in this paper, and a model of the second- order Doppler error is put forward. Moreover, the model has been simulated with both high velocity and variable velocity motion. The simulated results show that the second- order Doppler error is proportional to the velocity of the MCC when it moves with uniform motion and the measured displacement is certain. When the MCC moves with variable motion, the second- order Doppler error concerns not only velocity but also acceleration. When muzzle velocity is zero the second- order Doppler error caused by an acceleration of 0.6g can be up to 2.5 nm in 0.4 s, which is not negligible in nanometric measurement. Moreover, when the muzzle velocity is nonzero, the accelerated motion may result in a greater error and decelerated motion may result in a smaller error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113-2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent -1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Jiyang superdepression is one of the richest hydrocarbon accumulations in the Bohai Bay basin, eastern China. Comprehensive seismic methods have been used in buried hill exploration in Jiyang to describe these fractured reservoirs better. Accurate seismic stratigraphic demarcation and variable-velocity mapping were applied to reveal the inner structure of the buried hills and determine the nature of the structural traps more precisely. Based on the analysis of rock properties and the characteristics of well-developed buried hill reservoirs, we have successfully linked the geology and seismic response by applying seismic forward technology. Log-constrained inversion, absorption coefficient analysis and tectonic forward-inversion with FMI loggings were applied to analyse and evaluate the buried hill reservoirs and gave satisfying results. The reservoir prediction was successful, which confirmed that the comprehensive utilization of these methods can be helpful in the exploration of buried hill reservoirs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theoretical research, laboratory test and field observation show that most of sediment rock has anisotropic features. It will produce some notable errors when applying isotropic methods such as prestack depth migration and velocity analysis to dada acquired under anisotropic condition; it also has a bad effect on geologic interpretation. Generally speaking, the vertical transverse isotropic media is a good approximation to geologic structure, thus it has an important realistic meaning for anisotropic prestack depth migration theory researching and precise complex geologic imaging if considering anisotropic effect of seismic wave propagation. There are two indispensable parts in prestack depth migration of realistic records, one is proper prestack depth migration algorithm, and the other is velocity analysis using prestack seismic data. The paper consists of the two aspects. Based on implicit finite difference research proposed by Dietrich Ristow et al (1997) about VTI media prestack depth migration, the paper proposed split-step Fourier prestack depth migration algorithm (VTISSF) and Fourier finite difference algorithm (VTIFFD) based on wave equation for VTI media, program are designed and the depth migration method are tested using synthetic model. The result shows that VTISSF is a stable algorithm, it generally gets a good result if the reflector dip is not very steep, while undermigration phenomena appeared in steep dips case; the VTIFFD algorithm bring us better result in steep dips with lower efficiency and frequency dispersion. For anisotropic prestack depth migration velocity analysis of VTI media, The paper discussed the basic hypothesis of VTI model in velocity analysis algorithm, basis of anisotropic prestack depth migration velocity analysis and travel time table calculation of VTI media in integral prestack depth migration. Then , analyzed the P-wave common imaging gather in the case of homogeneous velocity and vertically variable velocity . studied the residual correction in common imaging gather produced by media parameter error, analyzed the condition of flat event and correct depth in common imaging gather . In this case, the anisotropic model parameter vector is , is vertical velocity of a point at top surface, is vertical velocity gradient, and are anisotropic parameter. We can get vertical velocity gradient from seismic data; then the P-wave common imaging gather of VTI media whose velocity varies in vertical and horizontal direction, the relationship between media parameter and event residual time shift of common image gather are studied. We got the condition of flattening common imaging gather with correct depth. In this case the anisotropic model parameter vector is , is velocity gradient in horizontal direction. As a result, the vertical velocity grads can be decided uniquely, but horizontal velocity grads and anisotropic parameter can’t be distinguished if no priori information available, our method is to supply parameter by velocity scanning; then, as soon as is supplied we can get another four parameters of VTI media from seismic data. Based on above analysis, the paper discussed the feasibility of migration velocity analysis in vertically and horizontally varied VTI media, synthetic record of three models are used to test the velocity analysis method . Firstly, anisotropic velocity analysis test is done using a simple model with one block, then we used a model with multiple blocks, thirdly, we analyzed the anisotropic velocity using a part of Marmousi model. The model results show that this velocity analysis method is feasible and correct.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rugged surface topography determined the seismic data acquisition construction conditions and the seismic wave explosive and receiver quality in Qaidam Basin. This dissertation systematically researched the seismic acquisition, imaging process and the attribute analysis techniques of complicated oil and gas reservoir. The main research achievements and cognitions are as follows: 1. Through the stimulation effects research and analysis from the aspect of lithologic water-containing differences, it’s specific that stable hydrous sand layer can effectively enhance the stimulation effects combined with the corresponding field tests. The seismic data S/N ratio has been improved due to the combination explosive stimulation. Through the fold number and maximum offset analyses of target horizon, the complicated geometry has been optimized and the S/N ratio of seismic data has been improved, which made an important basis for improvement of 3D seismic data. 2. It has been proved that the first arrival refraction static correction method under the model constraint of fine surface survey is suitable to the Qaidam Basin of western areas by the real seismic data processing. Although the refraction horizon of near surface has some changes in a certain extent, it’s steady basically. The refraction horizon can be continuously traced in sections, so it’s qualified for the refraction static correction method on the whole. 3. The research is based on the curved-ray pre-stack time migration techniques of rough topography, and improved the imaging precision of complex areas. This techniques adopted the constant and variable velocity scanning mode and enhanced the velocity analysis precision. The 3D pre-stack time migration techniques reasonably solved the imaging and velocity multiple solutions problems of steep-dip faults and the intersections of horizontal layers. What’s more, fine velocity analysis and mute are very important to enhance the imaging precision of the seismic data in complicated Wunan areas. 4. The 3D seismic data edge-preserving processing methods have been realized due to the image process techniques. Because this method uses the large range filter, it can attenuate the noise maximally. The faults, break points, lithologic pinchout points and lithologic body of small scale such as river will not be influenced by blur because of the edge-preserving characterization of the method which is really an effective assistant technique of low S/N ratio seismic data attribute analysis. 5. The use of spectral decomposition technique can effectively identify the reservoirs. The special geology body which will not be identified (or without obvious characters) in the seismic profile may be found through the details changes of different frequencies in the amplitude profiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the complex structure areas, velocity field building and structure mapping are important for seismic exploration. With the development of seismic exploration, the methods of structure mapping, reservoir prediction and reservoir description all require high precious velocity field. And more accurate depth-structure maps are required for well site design. Aiming at the problems and defects in velocity analysis and structure mapping in oil seismic exploration, the paper which is based on the studies of real data in several areas combines the theories with practical application, and analyzes the precision and applicability of several methods of velocity model building. After that, the following methods are mainly studied: the coherence inversion methods based on the pre-stack CMP gathers or stacking velocity; the interval velocity inversion methods constrained by multi-well; the Random Simulation method; 3D Image Ray Map Migration method and the structure mapping in floating datum and in fixed datum, and then we conclude the method of building high precious seismic velocity field and structure mapping with variable velocity. Firstly, the paper analyses the distributing rule of the velocity variation in the areas with complex structures in the northwest of China, then points out that velocity is a crucial factor which influences the precision of structure mapping, and the velocity variations have something to do with the shapes of the structures, the variety of lithology and so on. The key point of improving the precision of seismic velocity field is to obtain a structure mapping with high precision. We also describe the range and conditions of these methods. Secondly, by comparing many popular methods of velocity model building, we propose a new method in the use of velocity model building. The new method is more effective in velocity model building under every kind of complex condition and is worthy of spreading. At last, the paper fingers out that it is a system engineering to study variable velocity mapping in every kind of complex structure areas. Every step of the work can affect the final results. So it is important to build high efficient and practical velocity model and the flows of mapping processing. The paper builds the flows and gives some examples. The method has been applied in more than ten exploring surveys. The application proves that this method could bring good effect on researching on low-amplitude trap, reservoir prediction, reservoir description and the integrated research of oil&gas geology. Keywords: structure mapping velocity model building complex structure variable velocity media

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The parameters at the symmetrical axis of a cylindrical plume characterize the strength of this plume and provide a boundary condition which must be given to investigate the structure of a plume. For Newtonian fluid with a temperature-and pressure-dependence viscosity, an asymptotical solution of hydrodynamic equations at the symmetrical axis of the plume is found in the present paper. The temperature, upward velocity and viscosity at the symmetrical axis have been obtained as functions of depth, The calculated results have been given for two typical sets of Newtonian rheological parameters. The results obtained show that the temperature distribution along the symmetrical axis is nearly independent of the theological parameters. The upward velocity at the symmetrical axis, however, is strongly dependent on the rheological parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity held by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement while drilling (MWD) has become a popular survey technology to monitor directional data, drilling data, formation evaluation data and safety data in the world. And closed loop drilling shows promise in recent years. Obviously, the method of tr

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage not only degrades the mechanical properties of explosives, but also influences the shock sensitivity, combustion and even detonation behavior of explosives. The study of impact damage is crucial in the vulnerability evaluation of explosives. A long-pulse low-velocity gas gun with a gas buffer was developed and used to induce impact damage in a hot pressed plastic bonded explosive. Various methods were used to detect and characterize the impact damage of the explosive. The microstructure was examined by use of polarized light microscopy. Fractal analysis of the micrographs was conducted by use of box counting method. The correlation between the fractal dimensions and microstructures was analyzed. Ultrasonic testing was conducted using a pulse through-transmission method to obtain the ultrasonic velocity and ultrasonic attenuation. Spectra analyses were carried out for recorded ultrasonic signals using fast Fourier transform. The correlations between the impact damage and ultrasonic parameters including ultrasonic velocities and attenuation coefficients were also analyzed. To quantitatively assess the impact induced explosive crystal fractures, particle size distribution analyses of explosive crystals were conducted by using a thorough etching technique, in which the explosives samples were soaked in a solution for enough time that the binder was totally removed. Impact induces a large extent of explosive crystal fractures and a large number of microcracks. The ultrasonic velocity decreases and attenuation coefficients increase with the presence of impact damage. Both ultrasonic parameters and fractal dimension can be used to quantitatively assess the impact damage of plastic bonded explosives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The property of crystal depends seriously on the solution concentration distribution near the growth surface of a crystal. However, the concentration distributions are affected by the diffusion and convection of the solution. In the present experiment, the two methods of optical measurement are used to obtained velocity field and concentration field of NaClO3 solution. The convection patterns in sodium chlorate (NaClO3) crystal growth are measured by Digital Particle image Velocimetry (DPIV) technology. The 2-dimentional velocity distributions in the solution of NaClO3 are obtained from experiments. And concentration field are obtained by a Mach-Zehnder interferometer with a phase shift servo system. Interference patterns were recorded directly by a computer via a CCD camera. The evolution of velocity field and concentration field from dissolution to crystallization are visualized clearly. The structures of velocity fields were compared with that of concentration field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet Variable Interval Time Average (WVITA) is introduced as a method incorporating burst event detection in wall turbulence. Wavelet transform is performed to unfold the longitudinal fluctuating velocity time series measured in the near wall region of a turbulent boundary layer using hot-film anemometer. This unfolding is both in time and in space simultaneously. The splitted kinetic of the longitudinal fluctuating velocity time series among different scales is obtained by integrating the square of wavelet coefficient modulus over temporal space. The time scale that related to burst events in wall turbulence passing through the fixed probe is ascertained by maximum criterion of the kinetic energy evolution across scales. Wavelet transformed localized variance of the fluctuating velocity time series at the maximum kinetic scale is put forward instead of localized short time average variance in Variable Interval Time Average (VITA) scheme. The burst event detection result shows that WVITA scheme can avoid erroneous judgement and solve the grouping problem more effectively which is caused by VITA scheme itself and can not be avoided by adjusting the threshold level or changing the short time average interval.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For solving complex flow field with multi-scale structure higher order accurate schemes are preferred. Among high order schemes the compact schemes have higher resolving efficiency. When the compact and upwind compact schemes are used to solve aerodynamic problems there are numerical oscillations near the shocks. The reason of oscillation production is because of non-uniform group velocity of wave packets in numerical solutions. For improvement of resolution of the shock a parameter function is introduced in compact scheme to control the group velocity. The newly developed method is simple. It has higher accuracy and less stencil of grid points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetics and its regulation by extrinsic physical factors govern selectin-ligand interactions that mediate tethering and rolling of circulating cells on the vessel wall under hemodynamic forces. While the force regulation of off-rate for dissociation of selectin-ligand bonds has been extensively studied, much less is known about how transport impacts the on-rate for association of these bonds and their stability. We used atomic force microscopy (AFM) to quantify how the contact duration, loading rate, and approach velocity affected kinetic rates and strength of bonds of P-selectin interacting with P-selectin glycoprotein ligand I (PSGL-1). We found a saturable relationship between the contact time and the rupture force, a biphasic relationship between the adhesion probability and the retraction velocity, a piece-wise linear relationship between the rupture force and the logarithm of the loading rate, and a threshold relationship between the approach velocity and the rupture force. These results provide new insights into how physical factors regulate receptor-ligand interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For simulating multi-scale complex flow fields like turbulent flows, the high order accurate schemes are preferred. In this paper, a scheme construction with numerical flux residual correction (NFRC) is presented. Any order accurate difference approximation can be obtained with the NFRC. To improve the resolution of the shock, the constructed schemes are modified with group velocity control (GVC) and weighted group velocity control (WGVC). The method of scheme construction is simple, and it is used to solve practical problems.