9 resultados para VIEW
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A portable 3D laser scanning system has been designed and built for robot vision. By tilting the charge coupled device (CCD) plane of portable 3D scanning system according to the Scheimpflug condition, the depth-of-view is successfully extended from less than 40 to 100 mm. Based on the tilted camera model, the traditional two-step camera calibration method is modified by introducing the angle factor. Meanwhile, a novel segmental calibration approach, i.e., dividing the whole work range into two parts and calibrating, respectively, with corresponding system parameters, is proposed to effectively improve the measurement accuracy of the large depth-of-view 3D laser scanner. In the process of 3D reconstruction, different calibration parameters are used to transform the 2D coordinates into 3D coordinates according to the different positions of the image in the CCD plane, and the measurement accuracy of 60 mu m is obtained experimentally. Finally, the experiment of scanning a lamina by the large depth-of-view portable 3D laser scanner used by an industrial robot IRB 4400 is also employed to demonstrate the effectiveness and high measurement accuracy of our scanning system. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The mechanism of beam splitting and principle of wide-field-of-view compensation of modified Savart polariscope in the wide-field-of-view polarization interference imaging spectrometer (WPIIS) are analyzed and discussed. Formulas for the lateral displacement and optical path difference (OPD) produced by the modified Savart polariscope are derived by ray-tracing method. The theoretical and practical guidance is thereby provided for the study, design, modulation, experiment and engineering of the polarization interference imaging spectrometers and other birefringent Fourier-transform spectrometers based on Savart polariscopes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Natural hazards and human activities in the coastal zone are threatening the integrity of the coastal resource system. Conflicts of interest between short term economic benefits and long term ecologic assets should be identified and solved by means of a balanced CZM approach. Systems analysis, supported by mathematical modelling tools are the appropriate instruments to assist the coastal zone manager. The paper presents a general system description of the coastal zone, and focuses on the modelling of the natural subsystem components of this system as a first step towards a model for Integrated Coastal Management (ICM).
Resumo:
Maps of surface chlorophyllous pigment (Chl a + Pheo a) are currently produced from ocean color sensors. Transforming such maps into maps of primary production can be reliably done only by using light-production models in conjuction with additional information about the column-integrated pigment content and its vertical distribution. As a preliminary effort in this direction. $\ticksim 4,000$ vertical profiles pigment (Chl a + Pheo a) determined only in oceanic Case 1 waters have been statistically analyzed. They were scaled according to dimensionless depths (actual depth divided by the depth of the euphotic layer, $Z_e$) and expressed as dimensionless concentrations (actual concentration divided by the mean concentration within the euphotic layer). The depth $Z_e$ generally unknown, was computed with a previously develop bio-optical model. Highly sifnificant relationships were found allowing $\langle C \rangle_tot$, the pigment content of the euphotic layer, to be inferred from the surface concentration, $\bar C_pd$, observed within the layer of one penetration depth. According to their $\bar C_pd$ values (ranging from $0.01 to > 10 mg m^-3$), we categorized the profiles into seven trophic situations and computed a mean vertical profile for each. Between a quasi-uniform profile in eutrophic waters and a profile with a strong deep maximum in oligotrophic waters, the shape evolves rather regularly. The wellmixed cold waters, essentially in the Antarctic zone, have been separately examined. On average, their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values of $ρ$, the ratio of Chl a tp (Chl a + Pheo a), have also been obtained for each trophic category. The energy stored by photosynthesizing algae, once normalized with respect to the integrated chlorophyll biomass $\langle C \rangle _tot $ is proportional to the available photosythetic energy at the surface via a parameter $ψ∗$ which is the cross-section for photosynthesis per unit of areal chlorophyll. By tanking advantage of the relative stability of $ψ∗.$ we can compute primary production from ocean color data acquired from space. For such a computation, inputs are the irradiance field at the ocean surface, the "surface" pigment from which $\langle C \rangle _tot$ can be derived, the mean $ρ value pertinent to the trophic situation as depicted by the $\bar C_pd or $\langle C \rangle _tot$ values, and the cross-section $ψ∗$. Instead of a contant $ψ∗.$ value, the mean profiles can be used; they allow the climatological field of the $ψ∗.$ parameter to be adjusted through the parallel use of a spectral light-production model.
Resumo:
The macroscopic mechanical properties of polyaniline (PANI) lie mainly on two factors, the structure of molecular aggregations of polymers and the mechanical properties of a single polymer chain. The former factor is swell revealed; however, the latter is rarely studied. In this article, we have employed atomic force microscopy-based single-molecule force spectroscopy to investigate the mechanical properties of a kind of water-soluble PANI at a single-molecular level. We have carried out the study comparatively on single-chain-stretching experiments of oxidized, reduced, and doped PANI and obtained a full view of the single-chain elasticity of PANI in all these states. It is found that oxidized and reduced PANI chains are rigid, and the oxidized PANI is more rigid than the reduced PANI. Such a difference in single-chain elasticity can be rationalized by the molecular structures that are composed of benzenoid diamine and quinoid diimine its different proportions. The doped PANI has been found to be more flexible than the oxidized and reduced PANI, and the modified freely jointed chain parameters of doped PANI are similar with those of a common flexible-chain polymer.
Resumo:
A global wavenumber-3 dipole SST mode is showed to exist in the Southern Hemisphere subtropical climate variability in austral summer. A positive (negative) phase of the mode is characterized by cool (warm) SST anomalies in the east and warm (cool) SST anomalies in the southwest of the south Indian, Pacific, and Atlantic Oceans, respectively. This coherent dipole structure is largely a response of ocean mixed layer to the atmospheric forcing characterized by migration and modulation of the subtropical high-pressures, in which the latent heat flux play a leading role through wind-induced evaporation, although ocean dynamics may also be crucial in forming SST anomalies attached to the continents. Exploratory analyses suggest that this mode is strongly damped by the negative heat flux feedback, with a persistence time about three months and no spectral peak at interannual to decadal time scales. As the subtropical dipole mode is linearly independent of ENSO and SAM, whether it represents an additional source of climate predictability should be further studied. Citation: Wang, F. (2010), Subtropical dipole mode in the Southern Hemisphere: A global view, Geophys. Res. Lett., 37, L10702, doi: 10.1029/2010GL042750.