26 resultados para Utilisation de substances
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The behaviour of gaseous chlorine and alkali metals of three sorts of biomass (Danish straw, Swedish wood, and sewage sludge) in combustion or gasification is investigated by the chemical equilibrium calculating tool. The ranges of temperature, air-to-fuel ratio, and pressure are varied widely in the calculations (T=400-1800 K, gimel=0-1.8, and P=0.1-2.0 MPa). Results show that the air excess coefficient only has less significant influence on the release of gaseous chlorine and potassium or sodium during combustion. However, in biomass gasification, the influence of the air excess coefficient is very significant. Increasing air excess coefficient enhances the release of HCl(g), KOH(g), or NaOH(g) as well as it reduces the formation of KCl(g), NaCl(g), K(g), or Na(g). In biomass combustion or straw and sludge gasification, increasing pressure enhances the release of HCl(g) and reduces the amount of KCI(g), NaCl(g), KCI(g), or NaOH(g) at high temperatures. However, during wood gasification, the pressure enhances the formation of KOH(g) and KCI(g) and reduces the release of K(g) and HCl(g) at high temperatures. During wood and sewage sludge pyrolysis, nitrogen addition enhances the formation of KCN(g) and NaCN(g) and reduces the release of K(g) and Na(g). Kaolin addition in straw combustion may enhance the formation of potassium aluminosilicate in ash and significantly reduces the release of KCl(g) and KOH(g) and increases the formation of HCl(g).
Resumo:
We deliver the general conditions on the synthetic proportions for a homogeneous mixture of ferro- and nonmagnetic substances to become left-handed. As an alternative for left-handed metamaterials, we consider mixing ferromagnetic materials with nonmagnetic microscopic particles. In the mixture, the ferromagnetic material provides the needed permeability via domain wall resonances at high frequencies, whereas the nonmagnetic material gives the required permittivity. Using the effective medium theory, we have found that when the concentration of the nonmagnetic particles falls into a certain range, the refractive index of the mixture is negative, n < 0, which includes the double negative ( epsilon < 0 and mu < 0) and other cases ( e. g. epsilon < 0 and mu > 0). We finally give the requirements on the microscopic material properties for the ferromagnetic materials to reach the domain wall resonances at high frequencies.
Resumo:
Oxidation-reduction properties of surface sediments are tightly associated with the geochemistry of substances, and reducing organic substances (ROS) from hydrophytes residues may play an important role in these processes. In this study, composition, dynamics, and properties of ROS from anaerobic decomposition of Eichhornia crassipes (Mart.) Solms, Potamogenton crispus Linn, Vallisneria natans (Lour.) Hara, Lemna trisulca Linn and Microcystis flos-aquae (Wittr) Kirch were investigated using differential pulse voltammetry (DPV). The type of hydrophytes determined both the reducibility and composition of ROS. At the peak time of ROS production, the anaerobic decomposition of M. flos-aquae produced 6 types of ROS, among which 3 belonged to strongly reducing organic substance (SROS), whereas there were only 3-4 types of ROS from the other hydrophytes, 2 of them exhibiting strong reducibility. The order of potential of hydrophytes to produce ROS was estimated to be: M. flos-aquae > E. crassipes > L. trisulca > P. crispus approximate to V. natans, based on the summation of SROS and weakly reducing organic substances (WROS). The dynamic pattern of SROS production was greatly different from WROS. The total SROS appeared periodic fluctuation with reducibility gradually weakening with incubation time, whereas the total WROS increased with incubation time. Reducibility of ROS from hydrophytes was readily affected by acid, base and ligands, suggesting that their properties were related to these aspects. In addition to the reducibility, we believe that more attention should be paid to the other behaviors of ROS in surface sediments.
Resumo:
Strongly reducing organic substances (SROS) and iron oxides exist widely in soils and sediments and have been implicated in many soil and sediment processes. In the present work, the sorptive interaction between goethite and SROS derived from anaerobic decomposition of green manures was investigated by differential pulse voltammetry (DPV). Both green manures, Astragaltus sinicus (Astragalus) and Vicia varia (Vicia) were chosen to be anaerobically decomposed by the mixed microorganisms isolated from paddy soils for 30 d to prepare different SROS. Goethite used in experiments was synthesized in laboratory. The anaerobic incubation solutions from green manures at different incubation time were arranged to react with goethite, in which SROS concentration and Fe(II) species were analyzed. The anaerobic decomposition of Astragalus generally produced SROS more in amount but weaker in reducibility than that of Vicia in the same incubation time. The available SROS from Astragalus that could interact with goethite was 0.69 +/- 0.04, 0.84 +/- 0.04 and 1.09 +/- 0.03 cmol kg(-1) as incubated for 10, 15 and 30 d, respectively, for Vicia, it was 0.12 +/- 0.03, 0.46 +/- 0.02 and 0.70 +/- 0.02 cmol kg(-1). One of the fates of SROS as they interacted with goethite was oxidation. The amounts of oxidizable SROS from Astragalus decreased over increasing incubation time from 0.51 +/- 0.05 cmol kg(-1) at day 10 to 0.39 +/- 0.04 cmol kg(-1) at day 30, but for Vicia, it increased with the highest reaching to 0.58 +/- 0.04 cmol kg(-1) at day 30. Another fate of these substances was sorption by goethite. The SROS from Astragalus were sorbed more readily than those from Vicia, and closely depended upon the incubation time, whereas for those from Vicia, the corresponding values were remarkably less and apparently unchangeable with incubation time. The extent of goethite dissolution induced by the anaerobic solution from Vicia was greater than that from Astragalus, showing its higher reactivity. (c) 2008 Published by Elsevier Ltd.
Resumo:
According to outdated paradigms humic substances (HS) are considered to be refractory or inert that do not directly interact with aquatic organisms. However, they are taken up and induce biotransformation activities and may act as hormone-like substances. In the present study, we tested whether HS can interfere with endocrine regulation in the amphibian Xenopus laevis. In order to exclude contamination with phyto-hormones, which may occur in environmental isolates, the artificial HS 1500 was applied. The in vivo results showed that HS 1500 causes significant estrogenic effects on X. laevis during its larval development and results of semi-quantitative RT-PCR revealed a marked increase of the estrogenic biomarker estrogen receptor mRNA (ER-mRNA). Furthermore, preliminary RT-PCR results showed that the thyroid-stimulating hormone (TSH beta-mRNA) is enhanced after exposure to HS1500, indicating a weak adverse effect on T3/T4 availability. Hence, HS may have estrogenic and anti-thyroidal effects on aquatic animals, and therefore may influence the structure of aquatic communities and they may be considered environmental signaling chemicals. (c) 2005 Elsevier Ltd. All rights reserved.