22 resultados para User-based collaborative filtering
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Beijing University of Technology (BJUT); Beijing Municipal Lab of Brain Informatics; Chinese Society of Radiology; National Natural Science Foundation of China (NSFC); State Administration of Foreign Experts Affairs
Resumo:
传统的协作过滤推荐方法主要基于个人兴趣特征来实现推荐。在组织内部协作场景下,为实现知识共享与重用,推荐系统不仅要考虑用户兴趣,还应考虑用户和用户组的任务。传统的协作过滤推荐方法已不能满足要求。CoP是组织内部人员管理的主要形式,它的特征是其成员任务的反映。基于已有的协作过滤推荐研究与D-S理论,提出了一种CoP特征构建算法,并以此为基础研究了面向CoP的协作过滤推荐。
Resumo:
互联网个性化推荐系统(Internet personal recommender systems)是根据用户的兴趣推荐最相关的互联网信息给用户的系统。在网上信息过载矛盾越来越严重、用户信息检索的个性化需求日益增强的现状下,推荐系统已经在搜索引擎、电子商务、网上社区等互联网关键应用中起到了关键性的作用,并且越来越受到重视。 然而,在大型网站上部署一个成熟推荐系统的代价依然很大,需要大量的计算和存储资源,推荐的准确性也依然有很大提升空间和需求,这就为推荐系统的研究提供了很多挑战。在这些挑战中推荐算法的准确性和可扩展性一直是该领域最为关注的两个问题,所谓推荐的准确性是指推荐的信息中用户真正感兴趣的比例,而可扩展性指的是系统能否在可容忍的时间和空间复杂度内处理海量的数据。如何在提高算法推荐准确性的同时增强算法的可扩展性是推荐系统改进的主要研究目标。然而,目前学术界的研究更多侧重于提高推荐算法的准确性,而对于可扩展性,很多准确性很高的算法由于需要比较复杂的计算,处理大规模动态数据的能力往往比较有限,并且它们的评测实验中并没有将可扩展性纳入到评价范畴,导致这些算法目前还很难在工业界大规模应用。 本论文的研究试图解决这一问题。通过在推荐算法中借鉴增量学习(Incremental learning)的思想,即考虑最新的训练数据来更新原有的机器学习模型,不需要或仅需要参考部分旧的训练数据,相对于使用全部数据也即批量的处理方式,增量式改进可以大大降低模型更新的复杂度,从而可以大幅度提高推荐算法在遇到新的训练数据时推荐模型更新的效率,降低计算代价,使得推荐模型的更新可以更加及时,进而提高推荐结果的准确性。具体来说,我们在提出了两种新的增量式协同过滤算法的同时,采用增量式学习的方法对目前准确性最好的若干推荐算法进行加速,特别是提高这些算法面对新的训练数据的更新模型的速度和效率,从而为这些算法的大规模的应用提供了可能。另一方面,新的训练数据包含了最新的用户兴趣,因此相对于旧的训练数据,算法在做更新时应给予更高的权重,这样才能做到推荐的结果在考虑到用户长期兴趣的同时,特别考虑用户近期的兴趣,从而使得推荐结果更加准确。这两方面归纳起来,我们旨在通过增量式学习使得推荐算法在更新时更加高效和精确,真正适用于互联网上海量数据的推荐,同时对其他增量式推荐系统方面的研究也具有借鉴意义。我们的改进工作主要包括以下几个方面: 基于主题模型的增量式推荐算法。主题模型,特别是概率隐含主题模型(PLSA)是一种广泛应用于推荐系统的主流方法,在文本推荐、图像推荐以及协同过滤推荐领域都有着很好的推荐效果。目前制约PLSA算法取得更大成功的重要因素就是PLSA算法更新的复杂度过高,使得学习模型的更新只能做批量式处理,这样就导致推荐的时效性不高,也没有办法体现用户的最新的兴趣和整体的最新动态。我们提出了一种增量式学习方法,可以应用于文本分析领域和协同过滤领域,当有新的训练数据到来时,对于基于文本的推荐,增量式更新方法仅寻找最相关的用户和文本以及涉及到的单词进行主题分布的更新,并给予新的文本以更高权重;对于协同过滤,我们的方法仅对当前用户所评分过得物品以及当前物品所涉及的用户进行更新,大大降低了更新的运算复杂度,提高了新数据在推荐算法中所占的权重,使得推荐更加准确、及时。我们的算法在天涯问答文本数据集上和MovieLens电影推荐数据集、Last.FM歌曲推荐数据集、豆瓣图书推荐数据集等协同过滤数据集上取得了很好的效果。 基于蚁群算法(Ant colony algorithm)的协同过滤推荐方法。受到群体智能(Swarm intelligence)算法的启发,我们提出了一种类似于蚁群算法的协同过滤推荐方法——Ant Collaborative Filtering,初始化阶段该方法给予每个用户或一组用户以全局唯一的单位数量的信息素,当用户对物品评分或者用户表示对该物品感兴趣时,用户所携带的信息素相应的传播到该物品上,同时该物品上已有的信息素(初始化为0)也会相应的传播给该用户;此外,用户和物品所携带的信息素会随着时间的推移有一定速率的挥发,通过挥发机制,可以在推荐时更重视用户近期的兴趣;推荐阶段,按照用户和物品所携带的信息素的种类和数量,我们可以得到相应的相似度,进而通过经典的相似度比较的方法来进行推荐。基于蚁群的协同过滤方法的优势在于可以有效的降低训练数据中的稀疏性,并且推荐算法可以实时的进行更新和推荐,同时考虑了用户兴趣随着时间的变化。我们在MovieLens电影评分、豆瓣书籍推荐、Last.FM音乐推荐数据集上验证了我们的方法。最后,我们建立了一个互联网新闻推荐系统,该系统以Firefox插件形式实现,自动采集用户浏览兴趣和偏好,后端使用不同的推荐算法推荐用户感兴趣的新闻给用户。 基于联合聚类(Co-clustering)的两阶段协同过滤方法。聚类(Clustering)是一种缩小数据规模、降低数据稀疏性的有效方法。对于庞大而稀疏的协同过滤训练数据来说,聚类是一种很自然事实上也的确很有效的预处理方法。因此我们提出了一种两阶段协同过滤框架:首先通过我们提出的一种联合聚类的方法,将原始评分矩阵分解成很多维度很小的块,每一块里面包含相似的用户对相似的物品的评分,然后通过矩阵拟合的方法(我们使用了非负矩阵分解NMF和主题模型PLSA)来对这些小块中的未知评分进行预测。当用户新增了对于某物品的一条评分,我们仅需要更新该用户或该物品所处的数据块进行重新评分预估,大大加快了评分预估的速度。我们在MovieLens电影评分数据集上验证了该算法的效果。 本文的研究成果不仅可以直接应用于大型推荐系统中,而且对于增量式推荐系统的后续研究也具有一定的指导意义。首先基于PLSA的增量式推荐算法对于其他基于图模型的推荐系统具有借鉴价值,其次蚁群推荐算法为一类新的、基于群体智能(Swarm intellignece)的协同过滤算法做出了有价值的探索,最后我们提出的两阶段协同过滤框架对于提高推荐算法的可扩展性和更新效率提出了一个通用的有效解决方案。 推荐系统是一个无止尽的优化的过程,除了推荐精度的不断提高之外,推荐算法的性能随着互联网上数据量的增加也需要进一步提高,增量式学习无疑是提高推荐算法更新速度最重要的方法,本文的研究为这一方向提供了参考。
Resumo:
在基于动态联盟机制的无线传感器网络协同任务分配研究中,为了解决多目标追踪带来的联盟间的资源竞争问题,本文采用分布式约束满足算法解决多动态联盟间的协同问题.根据无线传感器网络多目标追踪的应用需求,建立了基于动态联盟机制的协同任务分配的分布式约束满足模型,并采用分布式随机算法求解满足约束条件的动态联盟集合,实现多动态联盟间的协同.仿真结果表明,分布式约束满足算法有效地解决了多目标追踪中多个动态联盟间的资源竞争问题,能够有效降低系统的能量消耗。
Resumo:
微机电系统、先进传感器、无线通信及现代网络等技术的进步,推动了无线传感器网络的产生和发展。集数据采集、处理、无线传输等功能于一体的无线传感器网络扩展了人们的信息获取能力,将逻辑上的信息世界与真实物理世界融合在一起,将改变人类与物理世界的交互方式。 任务分配就是在无线传感器节点协同过程中,确定由哪些节点来完成特定的任务。针对不同的应用领域,需要不同的任务分配方案与之适应,才能得到最佳的资源利用率和检测性能。无线传感器网络是一种分布式网络,需要多个节点协同执行检测任务,因此任务分配问题既是无线传感器网络的基本问题,也是无线传感器网络应用的基础。动态联盟机制是一种事件触发的任务分配机制,对动态环境的适应性相对较好,适用于动态性要求相对较高的目标追踪等无线传感器网络应用领域。 本文针对基于动态联盟机制的无线传感器网络的任务分配问题展开研究。论文的主要工作如下: 综合论述了无线传感器网络的任务分配问题的研究内容、特性和研究现状等。 针对节点能量和能力严格受限的问题,提出了一种基于拍卖的动态联盟组建机制。首先,将拍卖方法引入了动态联盟的组建过程,简化了动态联盟的组建,提高了动态联盟的结盟成功率,在更加有效地利用网络能量资源的同时提升了网络性能。而后,在选择拍卖标的时,综合考虑了节点剩余能量和通信能量消耗,提升了无线传感器网络的生命周期。 针对动态联盟的组织维护和能量均衡性问题,提出了一种基于协商的动态联盟成员更新机制。当动态联盟的成员能量消耗达到一定程度时,采用基于协商的机制对动态联盟成员进行更新,以增强系统能量消耗的均衡性,从而延长网络的生命周期。 针对任务影响区域不断变化的问题,给出了一种基于资源预留的动态联盟检测区域更新机制,以适应对动态联盟的动态性的要求。首先加入了联盟覆盖范围和休眠盟员的概念,以消除针对同一任务的检测传感器节点的冗余,进一步降低网络执行任务期间的能量消耗。而后又加入动态联盟的更新机制,以消除联盟衔接期间网络对任务的暂时“失明”,保证动态联盟执行任务时的连续性,从而在一定程度上保证网络的检测性能。 针对多动态联盟间的协同问题,提出了基于分布式约束满足的多联盟协同机制。根据多个目标经过无线传感器网络监控区域时的任务分配需求,提出了一种基于分布式约束满足的多动态联盟协同机制,建立了基于动态联盟机制的任务分配问题的分布式约束满足模型,采用分布式随机算法进行求解,可以针对未知数量的目标追踪进行分布式的动态协同任务分配,有效解决了动态联盟间的协同问题,从而降低网络的能量消耗,节省网络资源。 总之,论文对基于动态联盟机制的无线传感器网络任务分配问题进行了研究和探讨,旨在对无线传感器网络的应用起到一定的推动作用。
Resumo:
Interactive intention understanding is important for Pen-based User Interface (PUI). Many works on this topic are reported, and focus on handwriting or sketching recognition algorithms at the lexical layer. But these algorithms cannot totally solve the problem of intention understanding and can not provide the pen-based software with high usability. Hence, a scenario-based interactive intention understanding framework is presented in this paper, and is used to simulate human cognitive mechanisms and cognitive habits. By providing the understanding environment supporting the framework, we can apply the framework to the practical PUI system. The evaluation of the Scientific Training Management System for the Chinese National Diving Team shows that the framework is effective in improving the usability and enhancing the intention understanding capacity of this system.
Resumo:
We present a new technique called‘Tilt Menu’ for better extending selection capabilities of pen-based interfaces.The Tilt Menu is implemented by using 3D orientation information of pen devices while performing selection tasks.The Tilt Menu has the potential to aid traditional onehanded techniques as it simultaneously generates the secondary input (e.g., a command or parameter selection) while drawing/interacting with a pen tip without having to use the second hand or another device. We conduct two experiments to explore the performance of the Tilt Menu. In the first experiment, we analyze the effect of parameters of the Tilt Menu, such as the menu size and orientation of the item, on its usability. Results of the first experiment suggest some design guidelines for the Tilt Menu. In the second experiment, the Tilt Menu is compared to two types of techniques while performing connect-the-dot tasks using freeform drawing mechanism. Results of the second experiment show that the Tilt Menu perform better in comparison to the Tool Palette, and is as good as the Toolglass.
Resumo:
Pen-based user interface (PUI) has drawn significant interest, owing to its intuitiveness and convenience. While much of the research focuses on the technology, the usability of a PUI has been relatively low since human factors have not been considered sufficiently. Scenario-centric designs are ideal ways to improve usability. However, such designs possess some problems in practical use. To cope with these design issues, the concept of “interface scenarios” is proposed in to facilitate the interface design, and to help users understand the interaction process in such designs. The proposed scenario-focused development method for PUI is coupled with a practical application to show its effectiveness and usability.
Resumo:
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.
Resumo:
In the previous paper, a class of nonlinear system is mapped to a so-called skeleton linear model (SLM) based on the joint time-frequency analysis method. Behavior of the nonlinear system may be indicated quantitatively by the variance of the coefficients of SLM versus its response. Using this model we propose an identification method for nonlinear systems based on nonstationary vibration data in this paper. The key technique in the identification procedure is a time-frequency filtering method by which solution of the SLM is extracted from the response data of the corresponding nonlinear system. Two time-frequency filtering methods are discussed here. One is based on the quadratic time-frequency distribution and its inverse transform, the other is based on the quadratic time-frequency distribution and the wavelet transform. Both numerical examples and an experimental application are given to illustrate the validity of the technique.
Resumo:
An erratum is presented to correct the calculation of the filtering bandwidth of the micro-ring resonator. (C) 2009 Optical Society of America
Resumo:
An add-drop filter based on a perfect square resonator can realize a maximum of only 25% power dropping because the confined modes are standing-wave modes. By means of mode coupling between two modes with inverse symmetry properties, a traveling-wave-like filtering response is obtained in a two-dimensional single square cavity filter with cut or circular corners by finite-difference time-domain simulation. The optimized deformation parameters for an add-drop filter can be accurately predicted as the overlapping point of the two coupling modes in an isolated deformed square cavity. More than 80% power dropping can be obtained in a deformed square cavity filter with a side length of 3.01 mu m. The free spectral region is decided by the mode spacing between modes, with the sum of the mode indices differing by 1. (c) 2007 Optical Society of America.