14 resultados para United Steelworkers of America.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning and memory are exquisitely sensitive to behavioral stress, but the underlying mechanisms are still poorly understood. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as the hippocampus we have examined the means by which stress affects synaptic plasticity in the CA1 region of the hippocampus of anesthetized rats, Inescapable behavioral stress (placement on an elevated platform for 30 min) switched the direction of plasticity, favoring low frequency stimulation-induced decreases in synaptic transmission (long-term depression, LTD), and opposing the induction of long-term potentiation by high frequency stimulation, We have discovered that glucocorticoid receptor activation mediates these effects of stress on LTD and longterm potentiation in a protein synthesis-dependent manner because they were prevented by the glucocorticoid receptor antagonist RU 38486 and the protein synthesis inhibitor emetine. Consistent with this, the ability of exogenously applied corticosterone in non-stressed rats to mimic the effects of stress on synaptic plasticity was also blocked by these agents, The enablement of low frequency stimulation-induced LTD by both stress and exogenous corticosterone was also blocked by the transcription inhibitor actinomycin D, Thus, naturally occurring synaptic plasticity is liable to be reversed in stressful situations via glucocorticoid receptor activation and mechanisms dependent on the synthesis of new protein and RNA, This indicates that the modulation of hippocampus-mediated learning by acute inescapable stress requires glucocorticoid receptor-dependent initiation of transcription and translation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain structure and function experience dramatic changes from embryonic to postnatal development. Microarray analyses have detected differential gene expression at different stages and in disease models, but gene expression information during early brain development is limited. We have generated >27 million reads to identify mRNAs from the mouse cortex for>16,000 genes at either embryonic day 18 (E18) or postnatal day 7 (P7), a period of significant synapto-genesis for neural circuit formation. In addition, we devised strategies to detect alternative splice forms and uncovered more splice variants. We observed differential expression of 3,758 genes between the 2 stages, many with known functions or predicted to be important for neural development. Neurogenesis-related genes, such as those encoding Sox4, Sox11, and zinc-finger proteins, were more highly expressed at E18 than at P7. In contrast, the genes encoding synaptic proteins such as synaptotagmin, complexin 2, and syntaxin were up-regulated from E18 to P7. We also found that several neurological disorder-related genes were highly expressed at E18. Our transcriptome analysis may serve as a blueprint for gene expression pattern and provide functional clues of previously unknown genes and disease-related genes during early brain development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scattered with numerous salt lakes and approximate to 2,700-3,200 m above sea level, the giant Qaidam inland basin on the northern Tibetan Plateau has experienced continuing aridification since the beginning of the Late Cenozoic as a result of the India-Asia plate collision and associated uplift of the Tibetan Plateau. Previous evidence of aridification comes mainly from evaporite deposits and salinity-tolerant invertebrate fossils. Vertebrate fossils were rare until recent discoveries of abundant fish. Here, we report an unusual cyprinid fish, Hsianwenia wui, gen. et sp. nov., from Pliocene lake deposits of the Qaidam Basin, characterized by an extraordinarily thick skeleton that occupied almost the entire body. Such enormous skeletal thickening, apparently leaving little room for muscles, is unknown among extant fish. However, an almost identical condition occurs in the much smaller cyprinodontid Aphanius crassicaudus (Cyprinodonyiformes), collected from evaporites exposed along the northern margins of the Mediterranean Sea during the Messinian desiccation period. H. wui and A. crassicaudus both occur in similar deposits rich in carbonates (CaCO3) and sulfates (CaSO4), indicating that both were adapted to the extreme conditions resulting from the ariclification in the two areas. The overall skeletal thickening was most likely formed through deposition of the oversaturated calcium and was apparently a normal feature of the biology and growth of these fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spermatogonia are the male germ stem cells that continuously produce sperm for the next generation. Spermatogenesis is a complicated process that proceeds through mitotic phase of stem cell renewal and differentiation, meiotic phase, and postmeiotic phase of spermiogenesis. Full recapitulation of spermatogenesis in vitro has been impossible, as generation of normal spermatogonial stem cell lines without immortalization and production of motile sperm from these cells after long-term culture have not been achieved. Here we report the derivation of a normal spermatogonial cell line from a mature medakafish testis without immortalization. After 140 passages during 2 years of culture, this cell line retains stable but growth factor-dependent proliferation, a diploid karyotype, and the phenotype and gene expression pattern of spermatogonial stem cells. Furthermore, we show that this cell line can undergo meiosis and spermiogenesis to generate motile sperm. Therefore, the ability of continuous proliferation and sperm production in culture is an intrinsic property of medaka spermatogonial stem cells, and immortalization apparently is not necessary to derive male germ cell cultures. Our findings and cell line will offer a unique opportunity to study and recapitulate spermatogenesis in vitro and to develop approaches for germ-line transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SINE (short interspersed element) insertion analysis elucidates contentious aspects in the phylogeny of toothed whales and dolphins (Odontoceti), especially river dolphins. Here, we characterize 25 informative SINEs inserted into unique genomic loci during evolution of odontocetes to construct a cladogram. and determine a total of 2.8 kb per taxon of the flanking sequences of these SINE loci to estimate divergence times among lineages. We demonstrate that: (i) Odontocetes are monophyletic; (ii) Ganges River dolphins, beaked whales, and ocean dolphins diverged (in this order) after sperm whales; (iii) three other river dolphin taxa, namely the Amazon, La Plata, and Yangtze river dolphins, form a monophyletic group with Yangtze River dolphins being the most basal; and (iv) the rapid radiation of extant cetacean lineages occurred some 28-33 million years B.P., in strong accord with the fossil record. The combination of SINE and flanking sequence analysis suggests a topology and set of divergence times for odontocete relationships, offering alternative explanations for several long-standing problems in cetacean evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The four species of "river dolphins" are associated with six separate great river systems on three subcontinents and have been grouped for more than a century into a single taxon based on their similar appearance. However, several morphologists recently questioned the monophyly of that group. By using phylogenetic analyses of nucleotide sequences from three mitochondrial and two nuclear genes, we demonstrate with statistical significance that extant river dolphins are not monophyletic and suggest that they are relict species whose adaptation to riverine habitats incidentally insured their survival against major environmental changes in the marine ecosystem or the emergence of Delphinidae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the SR family of pre-mRNA splicing factors are phosphoproteins that share a phosphoepitope specifically recognized by monoclonal antibody (mAb) 104. Recent studies have indicated that phosphorylation may regulate the activity and the intracellular localization of these splicing factors. Here, we report the purification and kinetic properties of SR protein kinase 1 (SRPK1), a kinase specific for SR family members. We demonstrate that the kinase specifically recognizes the SR domain, which contains serine/arginine repeats. Previous studies have shown that dephosphorylated SR proteins did not react with mAb 104 and migrated faster in SDS gels than SR proteins from mammalian cells. We show that SRPK1 restores both mobility and mAB 104 reactivity to a SR protein SF2/ASF (splicing factor 2/alternative splicing factor) produced in bacteria, suggesting that SRPK1 is responsible for the generation of the mAb 104-specific phosphoepitope in vivo. Finally, we have correlated the effects of mutagenesis in the SR domain of SF2/ASF on splicing with those on phosphorylation of the protein by SRPK1, suggesting that phosphorylation of SR proteins is required for splicing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We established a theoretical framework for studying nonequilibrium networks with two distinct natures essential for characterizing the global probabilistic dynamics: the underlying potential landscape and the corresponding curl flux. We applied the idea to a biochemical oscillation network and found that the underlying potential landscape for the oscillation limit cycle has a distinct closed ring valley (Mexican hat-like) shape when the fluctuations are small. This global landscape structure leads to attractions of the system to the ring valley.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion.Including the configurational dependence will challenge the transition state theory of protein folding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfide: quinone oxidoreductase (SQR) is a flavoprotein with homologues in all domains of life except plants. It plays a physiological role both in sulfide detoxification and in energy transduction. We isolated the protein from native membranes of the hyperthermophilic bacterium Aquifex aeolicus, and we determined its X-ray structure in the "as-purified,'' substrate-bound, and inhibitor-bound forms at resolutions of 2.3, 2.0, and 2.9 angstrom, respectively. The structure is composed of 2 Rossmann domains and 1 attachment domain, with an overall monomeric architecture typical of disulfide oxidoreductase flavoproteins. A. aeolicus SQR is a surprisingly trimeric, periplasmic integral monotopic membrane protein that inserts about 12 angstrom into the lipidic bilayer through an amphipathic helix-turn-helix tripodal motif. The quinone is located in a channel that extends from the si side of the FAD to the membrane. The quinone ring is sandwiched between the conserved amino acids Phe-385 and Ile-346, and it is possibly protonated upon reduction via Glu-318 and/or neighboring water molecules. Sulfide polymerization occurs on the re side of FAD, where the invariant Cys-156 and Cys-347 appear to be covalently bound to polysulfur fragments. The structure suggests that FAD is covalently linked to the polypeptide in an unusual way, via a disulfide bridge between the 8-methyl group and Cys-124. The applicability of this disulfide bridge for transferring electrons from sulfide to FAD, 2 mechanisms for sulfide polymerization and channeling of the substrate, S2-, and of the product, S-n, in and out of the active site are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high mortality rate of immunocompromised patients with fungal infections and the limited availability of highly efficacious and safe agents demand the development of new antifungal therapeutics. To rapidly discover such agents, we developed a high-throughput synergy screening (HTSS) strategy for novel microbial natural products. Specifically, a microbial natural product library was screened for hits that synergize the effect of a low dosage of ketoconazole (KTC) that alone shows little detectable fungicidal activity. Through screening of approximate to 20,000 microbial extracts, 12 hits were identified with broadspectrum antifungal activity. Seven of them showed little cytotoxicity against human hepatoma cells. Fractionation of the active extracts revealed beauvericin (BEA) as the most potent component, because it dramatically synergized KTC activity against diverse fungal pathogens by a checkerboard assay. Significantly, in our immunocompromised mouse model, combinations of BEA (0.5 mg/kg) and KTC (0.5 mg/kg) prolonged survival of the host infected with Candida parapsilosis and reduced fungal colony counts in animal organs including kidneys, lungs, and brains. Such an effect was not achieved even with the high dose of 50 mg/kg KTC. These data support synergism between BEA and KTC and thereby a prospective strategy for antifungal therapy.