6 resultados para United Nations Conference on the Law of the Sea
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A marine geophysical survey was carried out, on the RN Science 1 of the Institute of Oceanography, Chinese Academy of Sciences (IOCAS), in 2000, at the Miyako Section of Okinawa Trough. Here we present seismic and acoustic evidence of a gas seep on the sea floor on the western part of the Okinawa Through, near the lower slope of the East China Sea Slope and discuss the possibility of related formation of gas hydrate. A gas column reflection was observed in echo-sounder data above a section where the sea floor reflector was missing, on both the echo-sounder and the seismic data for line H14. The seismic data also show an acoustic curtain reflection and a turbidity reflection at this section. These anomalies are the evidence of the existence of a gas seep, which occupies an area 2.2 km in diameter. Based on the acoustic curtain on line H14, we believe that the amount of gas contained in the sediments below the gas seep is larger than 1 % by volume of sediment. Tectonically, the gas seep developed in a small basin controlled by basement uplift in the north, south and east. The thickness of the sediment layer can be greater than 3.5 km. A mud diapir structure was found in layer D beneath the gas seep. Over-pressure may occur due to the large sediment thickness and also the tectonic basement uplift in the north, south, and east. The mud diapir could be the preferential pathway for methane-rich fluids. The acoustic curtain may indicate that free gas related to the gas seep can be formed on the sea floor. We also note that the layer above the acoustic curtain on profile H14 may contain gas hydrate.
Resumo:
The purpose of this paper is to examine the extent to which the existing US Coastal Zone Management (CZM) program represents Integrated Coastal Management (ICM). The actions taken at Rio de Janeiro in June 1992 as part of the United Nations Conference on Environment and Development (UNCED) could eventually impact the policies of the US in such a way as to encourage better integration of US coastal and ocean management efforts.
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers are numerically studied by rate equation models. Similar to the optical pump-probe experiment, the injection of double optical pulses is used to simulate the gain recovery of a weak continuous signal for the QD SOAs. The gain recoveries are fitted by a response function with multiple exponential terms. For the pulses duration of 10 ps, the gain recovery can be described by three exponential terms with the time constants, and for the pulse with the width of 150 fs, the gain recovery can be described by two exponential terms, the reason is that the short pulse does not consume lot of carriers.
Resumo:
Arrhenius law implicates that only those molecules which possess the internal energy greater than the activation energy E-a can react. However, the internal energy will not be proportional to the gas temperature if the specific heat ratio gamma and the gas constant R vary during chemical reaction processes. The varying gamma may affect significantly the chemical reaction rate calculated with the Arrhenius law under the constant gamma assumption, which has been widely accepted in detonation and combustion simulations for many years. In this paper, the roles of variable gamma and R in Arrhenius law applications are reconsidered, and their effects on the chemical reaction rate are demonstrated by simulating one-dimensional C-J and two-dimensional cellular detonations. A new overall one-step detonation model with variable gamma and R is proposed to improve the Arrhenius law. Numerical experiments demonstrate that this improved Arrhenius law works well in predicting detonation phenomena with the numerical results being in good agreement with experimental data.