98 resultados para UV-Raman spectroscopy
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The phase evolution of yttrium oxide and lanthanum oxide doped zirconia (Y2O3-ZrO2 and La2O3-ZrO2, respectively) from their tetragonal to monoclinic phase has been studied using UV Raman spectroscopy, visible Raman spectroscopy and XRD. UV Raman spectroscopy is found to be more sensitive at the surface region while visible Raman spectroscopy and XRD mainly give the bulk information. For Y2O3-ZrO2 and La2O3-ZrO2, the transformation of the bulk phase from the tetragonal to the monoclinic is significantly retarded by the presence of yttrium oxide and lanthanum oxide. However, the tetragonal phase in the surface region is difficult to stabilize, particularly when the stabilizer's content is low. The phase in the surface region can be more effectively stabilized by lanthanum oxide than yttrium oxide even though zirconia seemed to provide more enrichment in the surface region of the La2O3-ZrO2 sample than the Y2O3-ZrO2 sample, based on XPS analysis. The surface structural tension and the enrichment of the ZrO2, component in the surface region of ZrO2-Y2O3 and ZrO2-La2O3 might be the reasons for the striking difference between the phase change in the surface region and the bulk. Accordingly, the stabilized tetragonal surface region can significantly prevent the phase transition from developing into the bulk when the stabilizer's content is high.
Resumo:
The phase transformation of zirconia from tetragonal to monoclinic is characterized by UV Raman spectroscopy, visible Raman spectroscopy, and XRD. Electronic absorption Of ZrO2 in the UV region makes UV Raman spectroscopy more sensitive at the surface region than XRD or visible Raman spectroscopy. Zirconia changes from the tetragonal phase to the monoclinic phase with calcination temperatures elevated and monoclinic phase is always detected first by UV Raman spectroscopy for the samples calcined at lower temperatures than that by XRD and visible Raman spectroscopy. When the phase of zirconia changes from tetragonal to monoclinic, the slight changes of the phase at very beginning can be detected by UV Raman spectroscopy. UV Raman spectra clearly indicate that the phase transition takes place initially at the surface regions. It is found that the phase change from tetragonal to monoclinic is significantly retarded when amorphous Zr(OH)(4) was agglomerated to bigger particles and the particle agglomeration of amorphous zirconium hydroxide is beneficial to the stabilization of t-ZrO2 phase.
Resumo:
Coke formation on/in ZSM-5, USY and SAPO-34 zeolites was investigated during the methanol conversion to olefins at temperatures from 298 to 773 K using ultraviolet (UV) Raman spectroscopy. The fluorescence interference that usually obscures the Raman spectra of zeolites in the conventional Raman spectroscopy, particularly for coked catalysts, can be successfully avoided in the UV Raman spectroscopy. Raman spectra are almost the same for adsorbed methanol on the three zeolites at room temperature. However, the Raman spectra of the surface species formed at elevated temperatures are quite different for the three zeolites. Coke species formed in/on SAPO-34 are mainly polyolefinic species, and in/on ZSM-5 are some aromatic species, but polyaromatic or substituted aromatic species are predominant in USY at high temperatures. Most of the coke species can be removed after a treatment with O-2 at 773 K, while some small amount of coke species always remains in these zeolites, particularly for USY. The main reason for the different behavior of coke formation in the three zeolites could be attributed to the different pore structures of the zeolites. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A series of aluminosilicate zeolites are characterized by UV Raman spectroscopy for the first time, and UV Raman spectra of various zeolites give strong and clear bands with high resolution, while conventional Raman spectra of these zeolites are difficult to obtain because of a strong background fluorescence. Additionally, these zeolites show several new bands in UV Raman spectroscopy. A summary of these UV Raman spectra over various zeolites suggests that the bands at 470-530, 370-430, 290-410, and 220-280 cm(-1) can be assigned to the bending modes of 4-, 5-, 6-, and 8-membered rings of aluminosilicate zeolites, respectively. Furthermore, it is found that the band intensity of zeolites in UV Raman spectroscopy is dependent on the Si/Al ratio. Moreover, the UV Raman spectra of crystallization, for zeolite X at various times show that, in the initial stage of crystallization, the 4-membered rings (510 cm(-1)) interconnect each other to form beta -cages with 6-membered rings (390 cm(-1)), which further crystallize to zeolite X. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Using microporous zeolites as host, sub-nanometric ZnO clusters were prepared in the micropores of the host by the incipient wetness impregnation method. A small amount of sub-nanometric ZnO clusters were introduced into the channels of HZSM-5 zeolite, whereas a large quantity of sub-nanometric ZnO clusters can be accommodated in the supercages of HY zeolite and no macrocrystalline ZnO exists on the extra surface of the HY material. The vibrations of the zeolite framework and ZnO were characterized by UV Raman spectroscopy. The optical properties of these ZnO clusters were studied by UV-visible absorption spectroscopy and laser-induced luminescence spectroscopy. It is found that there are strong host-guest interactions between the framework oxygen atoms of zeolite and ZnO clusters influencing the motions of the framework oxygen atoms. The interaction may be the reason why ZnO clusters are stabilized in the pores of zeolites. Different from bulk ZnO materials, these sub-nanometric ZnO clusters exhibit their absorption onset below 265 nm and show a purple luminescence band (centered at 410-445 nm) that possesses high quantum efficiency and quantum size effect. This purple luminescence band most likely originates from the coordinatively unsaturated Zn sites in sub-nanometric ZnO clusters. On the other hand, the differences in the pore structure between HZSM-5 and HY zeolites cause the absorption edge and the purple luminescence band of ZnO clusters in ZnO/HZSM-5 show a red shift in comparison with those of ZnO clusters in ZnO/HY.
Resumo:
The synthesis of zeolite X is characterized by UV Raman spectroscopy, NMR spectroscopy, and X-ray diffraction. UV Raman spectra of the liquid phase of the synthesis system indicate that AI(OH); species are incorporated into silicate species, and the polymeric silicate species are depolymerized into monomeric silicate species during the early stage of zeolite formation. An. intermediate species possessing Raman bands at 307, 503, 858 and 1020 cm(-1) is detected during the crystallization ill the solid phase transformation. The intermediate species is attributed to the beta cage, the secondary building unit of zeolite X. A model for the formation of zeolite X is proposed, which involves four-membered rings connecting to each other via six-membered ring to form beta cages, then the beta cages interconnect via double six-membered rings to form the framework of zeolite X. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Isolated transition metal ions/oxides in molecular sieves and on surfaces are a class of active sites for selective oxidation of hydrocarbons. Identifying the active sites and their coordination structure is vital to understanding their essential role played in catalysis and designing and synthesizing more active and selective catalysts. The isolated transition metal ions in the framework of molecular sieves (e.g., TS-1, Fe-ZSM-5, and V-MCM-41) or on the surface of oxides (e.g., MoO3/Al2O3 and TiO2/SiO2) were successfully identified by UV resonance Raman spectroscopy. The charge transfer transitions between the transition metal ions and the oxygen anions are excited by a UV laser and consequently the UV resonance Raman effect greatly enhances the Raman signals of the isolated transition metal ions. The local coordination of these ions in the rigid framework of molecular sieves or in the relatively flexible structure on the surface can also be differentiated by the shifts of the resonance Raman bands. The relative concentration of the isolated transition metal ion/oxides could be estimated by the intensity ratio of Raman bands. This study demonstrates that the UV resonance Raman spectroscopy is a general technique that can be widely applied to the in-situ characterization of catalyst synthesis and catalytic reactions. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Silicalite-I, ZSM-5, and Fe-ZSM-5 zeolites prepared from two different silicon sources are characterized by UV resonance Raman (UVRR) spectroscopy, X-ray diffraction (XRD), electron spin resonance (ESR), and UV/visible diffuse reflectance spectroscopy (UV/Vis DRS). A new technique for investigating zeolitic structure, UV resonance Raman spectroscopy selectively enhances the Raman bands associated with framework iron atoms incorporated into MFI-type zeolites, and it is very sensitive in identifying the iron atoms in the framework of zeolites, while other techniques such as XRD, ESR, and UV/Vis DRS have failed in uncovering trace amounts of iron atoms in the framework of zeolites. (C) 2000 Academic Press.
Resumo:
Vanadium species in tetrahedral and octahedral coordination in V-MCM-41 molecular sieve are characterized by UV resonance Raman bands at 1070 and 930 cm(-1) respectively.
Resumo:
Framework titanium in Ti-silicalite-1 (TS-1) zeolite was selectively identified by its resonance Raman bands using ultraviolet (W) Raman spectroscopy. Raman spectra of the TS-1 and silicalite-1 zeolites were obtained and compared using continuous wave laser lines at 244, 325, and 488 nm as the excitation sources. It was only with the excitation at 244 nm that resonance enhanced Raman bands at 490, 530, and 1125 cm(-1) appeared exclusively for the TS-1 zeolite. Furthermore, these bands increased in intensity with the crystallization time of the TS-1 zeolite. The Raman bands at 490, 530, and 1125 cm(-1) are identified as the framework titanium species because they only appeared when the laser excites the charge-transfer transition of the framework titanium species in the TS-1. No resonance Raman enhancement was detected for the bands of silicalite-1 zeolite and for the band at 960 cm(-1) of TS-1 with any of the excitation sources ranging from the visible tb UV regions. This approach can be applicable for the identification of other transition metal ions substituted in the framework of a zeolite or any other molecular sieve.