65 resultados para UPPER-MANTLE STRUCTURE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A core from the source region of the Kuroshio warm current (east of the Luzon Island) was analyzed using several proxies in order to study the variability of the Western Pacific Warm Pool (WPWP) during the last two glacial-interglacial cycles. Primary productivity (PP) variations were deduced from variations in the coccolith flora. Primary productivity was higher during glacial periods (the end of Marine Isotope Stage [MIS] 3, some periods in MIS 2 and 6), and decreased during interglacial periods (MIS 7, MIS Se and probably MIS 5c-5d), with the lowest PP in MIS 5e. variations in the delta C-13 difference in benthic and bulk carbonate, thus in the vertical gradient of delta C-13 in dissolved inorganic carbon (Delta delta C-13(c). (wuellerstorfi-N. dutertrei) and Delta delta C-13(c.) (wuellerstorfi-coccolith)) Coincided With the PP Changes, showing that export productivity was low during interglacial periods (MIS 7, MIS 5e and Holocene) and high during glacial periods (MIS 6, probably MIS 5c-5d, late MIS 4 and late MIS 3). Comparison of foraminiferal carbonate dissolution indicators and PP changes reveals that nannofossil assemblage in core Ph05-5 is not sensitive to carbonate dissolution intensity. The depth of the thermocline (DOT) was estimated from planktonic forminiferal assemblages, and was relatively greater during interglacial periods (MIS 7, MIS 5e, probably MIS 5c and Holocene) than during glacials (middle MIS 6, probably MIS 5b and 5d, some periods in MIS 4, MIS 3 and MIS 2). Good coherence between the paleoproductivity records and the DOT suggests that the DOT changes could be the primary control factor in changes of paleoproductivity, and the glacial high productivity in the Kuroshio source region could be associated with a global increase of nutrient concentration in the intermediate waters that upwelled into the photic zone. The low CO2 values derived for intervals of high productivity and a relatively shallow DOT suggest that the changes in biological productivity and DOT in the equatorial Pacific could have modified atmospheric CO2 concentrations. High Sea Surface Temperatures (SSTs) during the warm MIS 5e in combination with intensified monsoonal rain fall could have resulted in a more intense stratification of the upper waters, resulting in low nutrient supply to the surface waters and a resulting decrease in productivity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Tien Shan is the most prominent intracontinental mountain belt on the earth. The active crustal deformation and earthquake activities provide an excellent place to study the continental geodynamics of intracontinental mountain belt. The studies of deep structures in crust and upper mantle are significantly meaningful for understanding the geological evolution and geodynamics of global intracontinental mountain belts. This dissertation focuses on the deep structures and geodynamics in the crust and upper mantle in the Tien Shan mountain belt. With the arrival time data from permanent and temporal seismic stations located in the western and central Tien Shan, using seismic travel time tomographic method, we inversed the P-wave velocity and Vp/Vs structures in the crust and uppermost mantle, the Pn and Sn velocities and Pn anisotropic structures in the uppermost mantle, and the P-wave velocity structures in the crust and mantle deep to 690km depth beneath the Tien Shan. The tomographic results suggest that the deep structures and geodynamics have significant impacts not only on the deformations and earthquake activities in the crust, but also on the mountain building, collision, and dynamics of the whole Tien Shan mountain belt. With the strongly collision and deformations in the crust, the 3-D P-wave velocity and Vp/Vs ratio structures are highly complex. The Pn and Sn velocities in the uppermost mantle beneath the Tien Shan, specially beneath the central Tien Shan, are significantly lower than the seismic wavespeed beneath geological stable regions. We infer that the hot upper mantle from the small-scale convection could elevate the temperature in the lower crust and uppermost mantle, and partially melt the materials in the lower crust. The observations of low P-wave and S-wave velocities, high Vp/Vs ratios near the Moho and the absences of earthquake activities in the lower crust are consistent with this inference. Based on teleseismic tomography images of the upper mantle beneath the Tien Shan, we infer that the lithosphere beneath the Tarim basin has subducted under the Tien Shan to depths as great as 500 km. The lithosphere beneath the Kazakh shield may have subducted to similar depths in the opposite direction, but the limited resolution of this data set makes this inference less certain. These images support the plate boundary model of converge for the Tien Shan, as the lithospheres to the north and south of the range both appear to behave as plates.
Resumo:
The seismic wide-angle reflection/refraction method is the one of the most effective method for probing the crustal and upper mantle structure. It mainly uses the wide-angle reflection information from the boundary in the crust and the top boundary of the upper mantle to rebuild the crust and upper mantle structure. Through analyzing the reflection and transmission coefficients of various incident waves on the interface, we think relative to the pre-critical angle reflection information the post critical angle reflection information that received by wide-angle seismic data exists a time-shift effect with the offset variation, and then it must cause the error for velocity analysis and structure image. The feature of the wide-angle seismic wave field of the fourteen representative crust columns tell us that the wide-angle effects in the different representative tectonic units for the interface depth and the interval velocity in crust. We studied the features of the wide-angle seismic wave field through building the crust model and inverse its travel time by GA method to know the wide-angle influence on crustal velocity image. At last we finished the data processing of the Tunxi-Wenzhou wide-angle seismic profile. The results are as following: (1) Through building crust model, we labeled the travel time for all the phases by ray tracing method and remove wide-angle effects method, it revealed the wide-angle effect exists in the seismic data. (2) The travel time inversion by GA method can tell us that the depth by traditional ray tracing method is shallower than the result by remove wide-angle effects method, the latter can recover the crust structure model in effect. (3) We applied the two method mentioned before to the fourteen representative crust columns in China. It indicates that the removed wide-angle effect method in travel time inversion is reasonable and effective. (4) The real data processing from Tunxi-Wenzhou wide-angle seismic profile give us the basic structure through the two ways. The main influence exhibits in the difference of the interval velocity of the curst, and the wide-angle effects in shallow interface are stronger than the deep interface.
Resumo:
The theory and approach of the broadband teleseismic body waveform inversion are expatiated in this paper, and the defining the crust structure's methods are developed. Based on the teleseismic P-wave data, the theoretic image of the P-wave radical component is calculated via the convolution of the teleseismic P-wave vertical component and the transform function, and thereby a P-wavefrom inversion method is built. The applied results show the approach effective, stable and its resolution high. The exact and reliable teleseismic P waveforms recorded by CDSN and IRIS and its geodynamics are utilized to obtain China and its vicinage lithospheric transfer functions, this region ithospheric structure is inverted through the inversion of reliable transfer functions, the new knowledge about the deep structure of China and its vicinage is obtained, and the reliable seismological evidence is provided to reveal the geodynamic evolution processes and set up the continental collisional theory. The major studies are as follows: Two important methods to study crustal and upper mantle structure -- body wave travel-time inversion and waveform modeling are reviewed systematically. Based on ray theory, travel-time inversion is characterized by simplicity, crustal and upper mantle velocity model can be obtained by using 1-D travel-time inversion preliminary, which introduces the reference model for studying focal location, focal mechanism, and fine structure of crustal and upper mantle. The large-scale lateral inhomogeneity of crustal and upper mantle can be obtained by three-dimensional t ravel-time seismic tomography. Based on elastic dynamics, through the fitting between theoretical seismogram and observed seismogram, waveform modeling can interpret the detail waveform and further uncover one-dimensional fine structure and lateral variation of crustal and upper mantle, especially the media characteristics of singular zones of ray. Whatever travel-time inversion and waveform modeling is supposed under certain approximate conditions, with respective advantages and disadvantages, and provide convincing structure information for elucidating physical and chemical features and geodynamic processes of crustal and upper mantle. Because the direct wave, surface wave, and refraction wave have lower resolution in investigating seismic velocity transitional zone, which is inadequate to study seismic discontinuities. On the contrary, both the converse and reflected wave, which sample the discontinuities directly, must be carefully picked up from seismogram to constrain the velocity transitional zones. Not only can the converse wave and reflected wave study the crustal structure, but also investigate the upper mantle discontinuities. There are a number of global and regional seismic discontinuities in the crustal and upper mantle, which plays a significant role in understanding physical and chemical properties and geodynamic processes of crustal and upper mantle. The broadband teleseismic P waveform inversion is studied particularly. The teleseismic P waveforms contain a lot of information related to source time function, near-source structure, propagation effect through the mantle, receiver structure, and instrument response, receiver function is isolated form teleseismic P waveform through the vector rotation of horizontal components into ray direction and the deconvolution of vertical component from the radial and tangential components of ground motion, the resulting time series is dominated by local receiver structure effect, and is hardly irrelevant to source and deep mantle effects. Receiver function is horizontal response, which eliminate multiple P wave reflection and retain direct wave and P-S converted waves, and is sensitive to the vertical variation of S wave velocity. Velocity structure beneath a seismic station has different response to radial and vertical component of an accident teleseismic P wave. To avoid the limits caused by a simplified assumption on the vertical response, the receiver function method is mended. In the frequency domain, the transfer function is showed by the ratio of radical response and vertical response of the media to P wave. In the time domain, the radial synthetic waveform can be obtained by the convolution of the transfer function with the vertical wave. In order to overcome the numerical instability, generalized reflection and transmission coefficient matrix method is applied to calculate the synthetic waveform so that all multi-reflection and phase conversion response can be included. A new inversion method, VFSA-LM method, is used in this study, which successfully combines very fast simulated annealing method (VFSA) with damped least square inversion method (LM). Synthetic waveform inversion test confirms its effectiveness and efficiency. Broadband teleseismic P waveform inversion is applied in lithospheric velocity study of China and its vicinage. According to the data of high quality CDSN and IRIS, we obtained an outline map showing the distribution of Asian continental crustal thickness. Based on these results gained, the features of distribution of the crustal thickness and outline of crustal structure under the Asian continent have been analyzed and studied. Finally, this paper advances the principal characteristics of the Asian continental crust. There exist four vast areas of relatively minor variations in the crustal thickness, namely, northern, eastern southern and central areas of Asian crust. As a byproduct, the earthquake location is discussed, Which is a basic issue in seismology. Because of the strong trade-off between the assumed initial time and focal depth and the nonlinear of the inversion problems, this issue is not settled at all. Aimed at the problem, a new earthquake location method named SAMS method is presented, In which, the objective function is the absolute value of the remnants of travel times together with the arrival times and use the Fast Simulated Annealing method is used to inverse. Applied in the Chi-Chi event relocation of Taiwan occurred on Sep 21, 2000, the results show that the SAMS method not only can reduce the effects of the trade-off between the initial time and focal depth, but can get better stability and resolving power. At the end of the paper, the inverse Q filtering method for compensating attenuation and frequency dispersion used in the seismic section of depth domain is discussed. According to the forward and inverse results of synthesized seismic records, our Q filtrating operator of the depth domain is consistent with the seismic laws in the absorbing media, which not only considers the effect of the media absorbing of the waves, but also fits the deformation laws, namely the frequency dispersion of the body wave. Two post stacked profiles about 60KM, a neritic area of China processed, the result shows that after the forward Q filtering of the depth domain, the wide of the wavelet of the middle and deep layers is compressed, the resolution and signal noise ratio are enhanced, and the primary sharp and energy distribution of the profile are retained.
Resumo:
A mass of geological, geophysical and geochemical data and information from the Okinawa Trough area are collected for comprehensive research in the study area from East China to Okinawa Trough and then to Ryukyu Island Are region. According to the seismic tomography result (P and S wave) and the processing result of free-air and Bouguer gravity anomaly and magnetic anomaly data in the study area, the comprehensive interpretation is carried out. The Moho depth distribution of the study area is obtained by the inversion calculation based on gravity data using the Harmonious Series method. The crust properties are analyzed. Meantime, some Cenozoic basalt data from Kuandian (NE China), Hannuoba (North China), Minxi (South China), Penghu Islands (Taiwan Strait), Okinawa Trough and Japan Island Arc regions are chosen to make the comparison research on element- isotopes. The result indicates that the lithosphere thickness in the Okinawa Trough area has obviously decreased, where a Low -velocity layer of upper-mantle has reached the Moho interface and the metasometized asthenosphere has formed. The research result on element- isotopes shows that the characteristic of the crust in the Okinawa Trough area is different from that in East China area and the Ryukyu Island Arc area. It is considered that the crust in the Okinawa Trough area belongs to the transition type, which is quite similar to the feature of the oceanic crust.
Resumo:
As the most spectacular and youngest case of continental collision on the Earth, to investigate the crust and mantle of Tibetan plateau, and then to reveal its characters of structure and deformation, are most important to understand its deformation mechanism and deep process. A great number of surface wave data were initially collected from events occurred between 1980 and 2002, which were recorded by 13 broadband digital stations in Eurasia and India. Up to 1,525 source-station Rayleigh waveforms and 1,464 Love wave trains were analysed to obtain group velocity dispersions, accompanying with the detail and quantitative assessment of the fitness of the classic Ray Theory, errors from focal and measurements. Assuming the model region covered by a mesh of 2ox2o-sized grid-cells, we have used the damped least-squares approach and the SVD to carry out tomographic inversion, SV- and SH-wave velocity images of the crust and upper mantle beneath the Tibetan Plateau and surroundings are obtained, and then the radial anisotropy is computed from the Love-Rayleigh discrepancy. The main results demonstrate that follows, a) The Moho beneath the Tibetan Plateau presents an undulating shape that lies between 65 and 74 km, and a clear correlation between the elevations of the plateau and the Moho topography suggests that at least a great part of the highly raised plateau is isostatically compensated. b) The lithospheric root presents a depth that can be substantiated at ~140 km (Qiangtang Block) and exceptionally at ~180 km (Lhasa Block), and exhibits laterally varying fast velocity between 4.6 and 4.7 km/s, even ~4.8 km/s under northern Lhasa Block and Qiangtang Block, which may be correlated with the presence of a shield-like upper mantle beneath the Tibetan Plateau and therefore looked as one of the geophysical tests confirming the underthrusting of India, whose leading edge might have exceeded the Bangong-Nujiang Suture, even the Jinsha Suture. c) The asthenosphere is depicted by a low velocity channel at depths between 140 and 220 km with negative velocity gradient and velocities as low as 4.2 km/s; d) Areas in which transverse radial anisotropy is in excess of ~4% and 6% on the average anisotropy are found in the crust and upper mantle underlying most of the Plateau, and up to 8% in some places. The strength, spatial configuration and sign of radial anisotropy seem to indicate the existence of a regime of horizontal compressive forces in the frame of the convergent orogen at the same time that laterally varying lithospheric rheology and a differential movement as regards the compressive driving forces. e) Slow-velocity anomalies of 12% or more in southern Tibet and the eastern edge of the Plateau support the idea of a mechanically weak middle-to-lower crust and the existence of crustal flow in Tibet.
Resumo:
The continent of eastern China, especially the North China Craton (NCC), has endured intensive tectonic renovation during Mesozoic and Cenozoic, with the presence of widespread magmatism, high heat flow and development of large sedimentary basins and mountain ranges. The cratonic lithosphere of the region has been destroyed remarkably, which is characterized by not only a significant reduction in thickness but also complex modifications in physical and chemical properties of the lithosphere. As for the tectonic regime controlling the evolution of the NCC, various models have been put forward, including the impingement of mantle plumes (“mushroom cloud” model), the collision of south China block and north China block, the subduction of the Pacific plate, etc. Lithosphere delamination and thermal erosion were proposed as the two end-member mechanisms of the lithospheric thinning. However, given the paucity of the data, deep structural evidence is currently still scarce for distinguishing and testifying these models. To better understand the deep structure of the NCC, from 2000 to the present, temporary seismic array observations have been conducted in the NCC by the Seismological Laboratory of the Institute of the Geology and Geophysics, Chinese Academy of Sciences under the North China Interior Structure Project (NCISP). Many arrays extend from the North China Craton and the off-craton regions, and traverse a lot of main tectonic boundaries. A total of more than 300 broadband seismic stations have been deployed along several profiles that traversed the major tectonic units within the craton’s interior, at the boundary areas and in the neighboring off-craton regions. These stations recorded abundant high-quality data, which provides an unprecedented opportunity for us to unravel the deep structural features of the NCC using seismological methods. Among all the seismological methods, the surface wave method appears to be an efficient and widely adopted technique in studying the crustal and upper mantle structures. In particular, it can provide the absolute values of S-wave velocity that are difficult to obtain with other methods. Benefiting from the deployment of dense seismic arrays, progresses have been made in improving the spatial resolution of surface wave imaging, which makes it possible to resolve the fine-scale velocity structures of the crust and upper mantle based on surface wave analysis. Meanwhile, the differences in the S-wave velocities derived from Rayleigh and Love wave data can provide information on the radial anisotropy beneath the seismic arrays. In this thesis, using the NCISP-III broadband data and based on phase velocity dispersion analysis and inversion of fundamental mode Rayleigh and Love waves, I investigated the lateral variations in the S-wave velocity structure of the crust and uppermost mantle beneath the Yanshan Belt and adjacent regions at the northeastern boundary of the NCC. Based on the constructed structural images, I discussed possible deep processes of the craton destruction in the study region.
Resumo:
Eastern Himalayan Syntaxis (EHS) and its surroundings (eastern margin of Tibet) is one of the most complicated tectonic areas in the world. As the exhaust opening of the balanced materials of the Tibetan Plateau during the collision of Indan and Eurasian plates, the deep structure beneath EHS surrounding region is referred to as the key to the study of the dynamics of the plateau. EHS3D project, sponsored by NSFC, has been proposed to explore the deep electric features of the area. During the first stage of EHS3D(2006-2008), MT+LMT measurements have been conducted along two lines from Chayu to Qingshuihe (EHS3D-3) and Chayu to Ruoergai (EHS3D-2). This paper will discuss the MT models of EHS3D-3 line. By the data procrssing, including distortion analysis, Robust estimation and strike decomposition, rotated apparent resitivities and phases have been obtained for each station. Then conventional 2-D inversion algorithms (NLCG and RRI) were employed to produce 2-D models. The final preferred 2-D model suggests that the upper crust consists of resistive blocks while in mid-lower crust there are two extensive conductive bodies beneath Lhasa block and Qiangtang terrain respectively. Jinshajiang suture is a gradient belt and Bangong-Nujiang suture appear a conductive belt dipping to the north. . We concluded that the formation of the two conductive bodies attributed to the partial melt and fluids in the lower crust. The regional electric strike derived from decomposition analysis indicates that the crust and upper mantle move in different manners. The upper crust moves like slips of rigid blocks along major slip faults while the lower crust creeps as a flow in the conductive channels.
Resumo:
Both the global and regional P wave tomographic studies have revealed significant deep structural heterogeneities in subduction zone regions. In particular, low-velocity anomalies have been observed beneath the descending high-velocity slabs in a number of subduction zones. The limited resolution at large depths and possible trade-off between the high and low velocities, however, make it difficult to substantiate this feature and evaluate the vertical extent of the low-velocity structure. From broadband waveform modeling of triplicated phases near the 660-km discontinuity for three deep events, we constrained both the P and SH wave velocity structures around the base of the upper mantle in northeast Asia. For the two events beneath the southern Kurile, the rays traveled through the lowermost transition zone and uppermost lower mantle under the descending Pacific slab. Our preferred models consistently suggest normal-to-lower P and significantly low SH velocities above and below the 660-km discontinuity extending to about 760-km depth compared with the global IASP91 model, corroborating previous observations for a slow structure underneath the slab. In contrast, both high P and SH velocity anomalies are shown in our preferred models for the Japan subduction zone region, likely reflecting the structural feature of a slab stagnant above the 660-km discontinuity. The velocity jumps across the 660-km discontinuity were found to be on average 4.5% and 7% for P and S waves under the south Kurile, and 3% and 6% under the Japan subduction zone. The respective velocity contrasts in the two regions are consistent with mineralogical models for colder slab interior and hotter under-slab areas. Based on mineral physics data, the depth-averaged ~1.5% P and ~2.5% SH velocity differences in the depth range of 560-760 km between the two regions could be primarily explained by a 350~450K temperature variation, although the presence of about 0.5wt%~1wt% water might also contribute to the subtle velocity variations near the base of the transition zone in the southern Kurile. From our modeling results, we speculate that the slow structure in the southern Kurile may be correlated to the low velocity zone observed previously around the 410-km discontinuity under Northern Honshu. Both are probably associated with a thermal anomaly rooted in the lower mantle beneath the subduction zone in northeast Asia.