20 resultados para UNIVERSAL DENSITY PROFILE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
At the shock velocity range of 7~9km/s, the variations of electron density behind strong normal shock waves are measured in a low-density shock tube by using the Langmuir electrostatic probe technique. The electron temperature, calculated based on Park’s three-temperature model, is used in interpreting the probe current data. The peak electron densities determined in the present experiment are shown to be in a good agreement with those predicted by Lin’s calculation. The experimentally obtained ratios of the characteristic ionization distance to the mean free path of freestream ahead of the shock wave are found to be in a good agreement with the existing experiments and Park’s calculation.
Resumo:
In 1990 JET operated with a number of technical improvements which led to advances in performance and permitted the carrying out of experiments specifically aimed at improving physics understanding of selected topics relevant to the "NEXT STEP". The new facilities include beryllium antenna screens, a prototype lower hybrid current drive system, and modification of the NI system to enable the injection of He-3 and He-4. Continued investigation of the hot-ion H-mode produced a value of n(D)(0)tau-E(T)(i)(0) = 9 x 10(20)m-3s keV, which is near conditions required for Q(DT) = 1, while a new peaked density profile H-mode was developed with only slightly lower performance. Progress towards steady state operation has been made by achieving ELMy H-modes under certain operating conditions, while maintaining good tau-E values. Experimental simulation of He ash transport indicates effective removal of alpha-particles from the plasma core for both L and H mode plasmas. Detailed analyses of particle and energy transport have helped establish a firmer link between particle and energy transport, and have suggested a connection between reduced energy transport and reversed shear. Numerical and analytic studies of divertor physics carried out for the pumped divertor phase of JET have helped clarify the key parameters governing impurity retention, and an intensive model validation effort has begun. Experimental simulation of alpha-particle effects with beta-fast up to 8% have shown that the slowing down processes are classical, and have given no evidence of deleterious collective effects.
Resumo:
In the present paper, the piston model of the coronal transient (see Hu. 1983a, b is discssed in detail, and the quantitative results of unsteady gasdynamics are applied to the coronal transient processes. The piston model explains the major features of the transient observations, such as the density profile, the geometric configuration, the kinetic process and the classifications of the coronal transient. Based on the idea of piston model, the bright feature and the dark feature of the transient are the gasdynamical response of the dense plasma ejecting into the corona, and associate with the compressed and rarefied flows, respectively. The quantitative results show that the density increment in the compressed region and the density decrement in the rarefied region are one order of magnitude larger and smaller, respectively, to the density in the quiet corona, it agrees quantitatively with the observations, and both the bright feature and dark feature are explained at the same time.
Resumo:
The induced flow fields by internal solitary waves and its actions on cylindrical piles in density stratified ocean with a basic density profile and a basic velocity profile are investigated. Some results, such as the time evolution of flow fields and hydrodynamic forces on the piles are yielded both by theoretical analysis and numerical calculation for general and specific cases. Several kinds of ambient sea conditions of the South China Sea are specified for numerical simulation. Moreover, the effects of relative density difference, depth ratio and wave steepness on maximal total force and total torque are analyzed.
Resumo:
利用解析的方法研究了非相对论线偏振激光与等离子体相互作用中的J×B加热吸收机理,建立了一种包含两类有质动力效应在内的自洽理论.探讨了密度轮廓修正下的J×B加热机理,给出了相应的吸收系数随激光场强度变化的关系曲线.研究发现,当激光场强度A0=20时,J×B加热所导致的吸收系数fabs约为2.8%.
Resumo:
An analytical fluid model for JxB heating during the normal incidence by a short ultraintense linearly polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the JxB heating includes two distinct coupling processes depending on the initial laser and plasma conditions: for a moderate intensity (a <= 1), the ponderomotive force of the laser light can drive a large plasma wave at the point n(e)=4 gamma(0)n(c) resonantly. When this plasma wave is damped, the energy is transferred to the plasma. At higher intensity, the electron density is steepened to a high level by the time-independent ponderomotive force, n(e)> 4 gamma(0)n(c), so that no 2 omega resonance will occur, but the longitudinal component of the oscillating ponderomotive field can lead to an absorption mechanism similar to "vacuum heating." (c) 2006 American Institute of Physics.
Resumo:
An analytical fluid model for vacuum heating during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking since the front part of the returning electrons always move slower than the trailing part. This can lead to heating of the plasma at the expense of the wave energy. An estimate for the efficiency of laser energy absorption by the vacuum heating is given. It is also found that for the incident laser intensity parameter, a(L)> 0.5, the absorption rate peaks at an incident angle 45 degrees-52 degrees and it reaches a maximum of 30% at a(L)approximate to 1.5.
Resumo:
The distribution of optical held and charge density in the interaction between ultraintense ultrashort pulse laser and plasma is studied by numerical computation. The plasma considered has an exponential density profile. which corresponds to isothermal expanding. Our calculation shows that electrons are pushed forward by the incident laser, but ions, due to their much greater inertia, remain stationary. The resulting charge displacement forms a strong electrostatic field in the plasma. After the interaction of laser pulse and plasma. electrostatic energy still exists even after the laser pulse and will be absorbed by the plasma finally. This serves as an explanation to the mechanism of laser energy deposited into plasma.
Resumo:
An analytical fluid model is proposed for the generation of strong quasistatic magnetic fields during normal incidence of a short ultraintense Gaussian laser pulse with a finite spot size on an overdense plasma. The steepening of the electron density profile in the originally homogeneous overdense plasma and the formation of electron cavitation as the electrons are pushed inward by the laser are included self-consistently. It is shown that the appearance of the cavitation plays an important role in the generation of quasistatic magnetic fields: the strong plasma inhomogeneities caused by the formation of the electron cavitation lead to the generation of a strong axial quasistatic magnetic field B-z. In the overdense regime, the generated quasistatic magnetic field increases with increasing laser intensity, while it decreases with increasing plasma density. It is also found that, in a moderately overdense plasma, highly intense laser pulses can generate magnetic fields similar to 100 MG and greater due to the transverse linear mode conversion process.
Resumo:
采用20μm的狭缝配平面晶体谱仪构成空间分辨光谱测量系统,对Al激光等离子体的K壳层发射谱进行测量。利用Al的Ly-α线谱的翼部Stark展宽效应推得电子密度空间分布轮廓.建立了翼部Stark展宽法测量高密度等离子体电子密度的诊断技术。
Resumo:
We present results on the system size dependence of high transverse momentum di-hadron correlations at root s(NN) = 200 GeV as measured by STAR at RHIC. Measurements in d + Au, Cu + Cu and Au + Au collisions reveal similar jet-like near-side correlation yields (correlations at small angular separation Delta phi similar to 0, Delta eta similar to 0) for all systems and centralities. Previous measurements have shown Chat the away-side (Delta phi similar to pi) yield is suppressed in heavy-ion collisions. We present measurements of the away-side Suppression as a function of transverse momentum and centrality in Cu + Cu and Au + Au collisions. The suppression is found to be similar in Cu + Cu and An + An collisions at a similar number of participants. The results are compared to theoretical calculations based on the patron quenching model and the modified fragmentation model. The observed differences between data and theory indicate that the correlated yields presented here will further constrain dynamic energy loss models and provide information about the dynamic density profile in heavy-ion collisions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The ionospheric parameter M(3000)F2 (the so-called transmission factor or the propagation factor) is important not only in practical applications such as frequency planning for radio-communication but also in ionospheric modeling. This parameter is strongly anti-correlated with the ionospheric F2-layer peak height hmF2,a parameter often used as a key anchor point in some widely used empirical models of the ionospheric electron density profile (e.g., in IRI and NeQuick models). Since hmF2 is not easy to obtain from measurements and M(3000)F2 can be routinely scaled from ionograms recorded by ionosonde/digisonde stations distributed globally and its data has been accumulated for a long history, usually the value of hmF2 is calculated from M(3000)F2 using the empirical formula connecting them. In practice, CCIR M(3000)F2 model is widely used to obtain M(3000)F2 value. However, recently some authors found that the CCIR M(3000)F2 model has remarkable discrepancies with the measured M(3000)F2, especially in low-latitude and equatorial regions. For this reason, the International Reference Ionosphere (IRI) research community proposes to improve or update the currently used CCIR M(3000)F2 model. Any efforts toward the improvement and updating of the current M(3000)F2 model or newly development of a global hmF2 model are encouraged. In this dissertation, an effort is made to construct the empirical models of M(3000)F2 and hmF2 based on the empirical orthogonal function (EOF) analysis combined with regression analysis method. The main results are as follows: 1. A single station model is constructed using monthly median hourly values of M(3000)F2 data observed at Wuhan Ionospheric Observatory during the years of 1957–1991 and compared with the IRI model. The result shows that EOF method is possible to use only a few orders of EOF components to represent most of the variance of the original data set. It is a powerful method for ionospheric modeling. 2. Using the values of M(3000)F2 observed by ionosondes distributed globally, data at grids uniformly distributed globally were obtained by using the Kriging interpolation method. Then the gridded data were decomposed into EOF components using two different coordinates: (1) geographical longitude and latitude; (2) modified dip (Modip) and local time. Based on the EOF decompositions of the gridded data under these two coordinates systems, two types of the global M(3000)F2 model are constructed. Statistical analysis showed that the two types of the constructed M(3000)F2 model have better agreement with the observational M(3000)F2 than the M(3000)F2 model currently used by IRI. The constructed models can represent the global variations of M(3000)F2 better. 3. The hmF2 data used to construct the hmF2 model were converted from the observed M(3000)F2 based on the empirical formula connecting them. We also constructed two types of the global hmF2 model using the similar method of modeling M(3000)F2. Statistical analysis showed that the prediction of our models is more accurate than the model of IRI. This demonstrated that using EOF analysis method to construct global model of hmF2 directly is feasible. The results in this thesis indicate that the modeling technique based on EOF expansion combined with regression analysis is very promising when used to construct the global models of M(3000)F2 and hmF2. It is worthwhile to investigate further and has the potential to be used to the global modeling of other ionospheric parameters.
Resumo:
When used in the determining the total electron content (TEC), which may be the most important ionospheric parameter, the worldwide GPS observation brings a revolutionary change in the ionospheric science. There are three steps in the data processing to retrieve GPS TEC: (1) to estimate slant TEC from the measurements of GPS signals; (2) to map the slant TEC into vertical; and (3) to interpolate the vertical TEC into grid points. In this scientific dissertation we focus our attention on the second step, the mapping theory and method to convert slant TEC into vertical. This is conventionally done by multiplying on the slant TEC a mapping function which is usually determined by certain models of electron density profile. Study of the vertical TEC mapping function is of significance in GPS TEC measurement. This paper first reviews briefly the three steps in GPS TEC mapping process. Then we compare the vertical TEC mapping function which were respectively calculated from the electron density profiles of the ionospheric model and retrieved from the observation of worldwide GPS TEC. We also perform the statistical analysis on the observational mapping functions. The main works and results are as follows: 1. We calculated the vertical TEC mapping functions for both SLM and Chapman models, and discussed the modulation of the ionosphere height to the mapping functions. We use two simple models, single layer model (SLM) and Chapman models, of the ionospheric electron density profiles to calculate the vertical TEC mapping function. In the case of the SLM, we discuss the control of the ionospheric altitude, i.e., the layer height hipp, to the mapping function. We find that the mapping function decreases rapidly as hipp increases. For the Chapman model we study also the control mapping function by both ionospheric altitude indicated by the peak electron density height hmF2, and the scale height, H, which present the thickness of the ionosphere. It is also found that the mapping function decreases rapidly as hmF2 increases. and it also decreases as H increases. 2. Then we estimate the mapping functions from the GPS observations and compare them with those calculated from the electron density models. We first, proposed a new method to estimate the mapping functions from GPS TEC data. This method is then used to retrieve the observational mapping function from both the slant TEC (TECS) provided by International GPS Service (IGS)and vertical TEC provide by JPL Global Ionospheric Maps (GIMs). Then we compare the observational mapping function with those calculated from the electron density models, SLM and Chapman. We find that the values of the observational mapping functions are much smaller than that from the model mapping functions, when the zenith angle is large enough. We attribute this to the effect of the plasmasphere which is above about 1000 km. 3. We statistically analyze the observational mapping functions and reveal their climatological changes. Observational mapping functions during 1999-2007 are used in our statistics. The main results are as follows. (1) The observational mapping functions decrease obviously with the decrement of the solar activity which is represented by the F10.7 index; (2) In annual variations of the observational mapping functions, the semiannual component is found at low-latitudes, and the remarkable seasonal variations at mid- and high-latitudes. (3) The diurnal variation of the observational mapping functions is that they are large in daytime and small at night, they become extremely small in the early morning before sunrise. (4) The observational mapping functions change with latitudes that they are smaller at lower latitudes and larger at higher. All of the above variations of the observational mapping functions are explained by the existence of the plasmasphere, which changes more slowly with time and more rapidly with latitude than the ionosphere does . In summary, our study on the vertical TEC mapping function imply that the ionosphere height has a modulative effect on the mapping function. We first propose the concept of the 'observational mapping functions' , and provide a new method to calculate them. This is important in improving the TEC mapping. It may also possible to retrieving the plasmaspheric information from GPS observations.