23 resultados para Two dimensions

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The spatiotemporal evolutions of ultrashort pulses in two dimensions are investigated numerically by solving the coupled Maxwell-Bloch equations without invoking the slowly varying envelope approximation and rotating-wave approximation. For an on-axis 2n pi sech pulse, local delay makes the temporal split 2 pi sech pulses crescent-shaped in the transverse distribution. Due to the transverse effect, the temporal split 2 pi sech pulses become unstable and experience reshaping during the propagation process. Then, interference occurs between the successive crescent-shaped pulses and multiple self-focusing can form.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) was on-line hyphenated by a dialysis interface to achieve a 2D capillary electrophoresis (CE) system. The system was used with just one high-voltage power supply and three electrodes (one cathode shared by the two dimensions). The focused zone in the first dimension (i.e. the cIEF) was driven to the dialysis interface by electroosmotic flow (EOF), besides chemical mobilization from the first anode to the shared cathode. And then in the second dimension (i.e. the CZE), the separated zone was further separated and driven by an inverted EOF, which originated from the charged layer of a cationic surfactant adsorbed onto the inner wall of the capillary. Finally, a solution of ribonuclease was rapidly separated to assess the feasibility of the two-dimensional CE implement. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Light transmission through a single subwavelength slit surrounded by periodic grooves in layered films consisting of Au and dielectric material is analyzed by the finite difference time domain method in two dimensions. The results show that the transmission field can be enhanced by the corrugations on the output plane, which is a supplementary explanation for the extraordinary optical transmission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we analyze light transmission through a single subwavelength slit surrounded by periodic grooves in layered films consisting of An and dielectric material. A subwavelength grating is scanned numerically by the finite difference time domain method in two dimensions. The results show that the transmission field can be confined to a spot with subwavelength width in the far field and can be useful in the application of a high-resolution far-field scanning optical microscope.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An on-line two-dimensional (2D) capillary electrophoresis (CE) system consisting of capillary isoelectric focusing (CIEF) and capillary gel electrophoresis (CGE) was introduced. To validate this 2D system, a dialysis interface was developed by mounting a hollow fiber on a methacrylate resin plate to hyphenate the two CE modes. The two dimensions of capillary shared a cathode fixated into a reservoir in the methacrylate plate; thus, with three electrodes and only one high-voltage source, a 2D CE framework was successfully established. A practical 2D CIEF-CGE experiment was carried out to deal with a target protein, hemoglobin (Hb). After the Hb variants with different isoelectric points (pIs) were focused in various bands in the first-dimension capillary, they were chemically mobilized one after another and fed to the second-dimension capillary for further separation in polyacrylamide gel. During this procedure, a single CIEF band was separated into several peaks due to different molecular weights. The resulting electrophoregrarn is quite different from that of either CIEF or CGE; therefore, more information about the studied Hb sample can be obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geoacoustic properties of the seabed have a controlling role in the propagation and reverberation of sound in shallow-water environments. Several techniques are available to quantify the important properties but are usually unable to adequately sample the region of interest. In this paper, we explore the potential for obtaining geotechnical properties from a process-based stratigraphic model. Grain-size predictions from the stratigraphic model are combined with two acoustic models to estimate sound speed with distance across the New Jersey continental shelf and with depth below the seabed. Model predictions are compared to two independent sets of data: 1) Surficial sound speeds obtained through direct measurement using in situ compressional wave probes, and 2) sound speed as a function of depth obtained through inversion of seabed reflection measurements. In water depths less than 100 m, the model predictions produce a trend of decreasing grain-size and sound speed with increasing water depth as similarly observed in the measured surficial data. In water depths between 100 and 130 m, the model predictions exhibit an increase in sound speed that was not observed in the measured surficial data. A closer comparison indicates that the grain-sizes predicted for the surficial sediments are generally too small producing sound speeds that are too slow. The predicted sound speeds also tend to be too slow for sediments 0.5-20 m below the seabed in water depths greater than 100 m. However, in water depths less than 100 m, the sound speeds between 0.5-20-m subbottom depth are generally too fast. There are several reasons for the discrepancies including the stratigraphic model was limited to two dimensions, the model was unable to simulate biologic processes responsible for the high sound-speed shell material common in the model area, and incomplete geological records necessary to accurately predict grain-size

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Banded spherulite patterns are simulated in two dimensions by means of a coupled logistic map lattice model. Both target pattern and spiral pattern which have been proved to be existent experimentally in banded spherulite are obtained by choosing suitable parameters in the model. The simulation results also indicate that the band spacing is decreased with the increase of parameter mu in the logistic map and increased with the increase of the coupling parameter epsilon, which is quite similar to the results in some experiments. Moreover, the relationship between the parameters and the corresponding patterns is obtained, and the target patterns and spiral patterns are distinguished for a given group of initial values, which may guide the study of banded spherulite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By using a combinatorial screening method based on the self-consistent field theory, we investigate the equilibrium morphologies of linear ABCBA and H-shaped (AB)(2)C(BA)(2) block copolymers in two dimensions. The triangle phase diagrams of both block copolymers are constructed by systematically varying the volume fractions of blocks A, B, and C. In this study, the interaction energies between species A, B, and C are set to be equal. Four different equilibrium morphologies are identified, i.e., the lamellar phase (LAM), the hexagonal lattice phase (HEX), the core-shell hexagonal lattice phase (CSH), and the two interpenetrating tetragonal lattice phase (TET2). For the linear ABCBA block copolymer, the reflection symmetry is observed in the phase diagram except for some special grid points, and most of grid points are occupied by LAM morphology. However, for the H-shaped (AB)(2)C(BA)(2) block copolymer, most of the grid points in the triangle phase diagram are occupied by CSH morphology, which is ascribed to the different chain architectures of the two block copolymers. These results may help in the design of block copolymers with different microstructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

8-Hydroxyquinoline (8-q) salt of pyromellitic acid (benzene-1,2,4,5-tetracarboxylic acid, H(4)bta) forms robust lamellar structure where [H(2)bta](2-) anions build up sheets through strong hydrogen bonds in two dimensions and [H-8-q](+) cations act as pillars to afford an extended three dimensional network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by a Monte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it was attractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphology and structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introduced into the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymer blends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the block copolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends. Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell structure was observed in the segment B composition region from 20% to 60%. However, if diblock copolymer composition in the blends is less than 40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%. Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increase continuously and their distribution became wider with decreasing B-segment component.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fully relaxed single-bond torsional potentials and orientation-related rotational potentials of 2,2'-bithiophene (BT) under the interaction of an external electric field (EF) constructed by point charges have been evaluated with semi-empirical AMI and PM3 calculations. The torsional potentials are sensitive to both EF strength and direction. While the EF is parallel to the molecular long axis, the torsional barrier around C-x-C-x' bond obviously rises with increasing the EF strength, whereas the relative energies of syn and anti minima show a slight change. The interaction between the EF and the induced dipole moment has been proposed to elucidate this observation. On the other hand, the relative energy difference between the syn and anti minima shows an obvious change, while the EF is perpendicular to the molecular long axis. This feature has been ascribed to the interaction between the EF and the permanent dipole moment of BT. Furthermore, conformational and orientational analyses in two dimensions have been carried out by changing the torsional and rotational angles in the different EF. The conformation and orientation of a gas-phase BT in the EF are governed by both the above factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Full Paper: The phase, behavior of A-B-random copolymer/C-homopolymer, blends with special interaction was studied by a. Monte, Carlo simulation in two dimensions. The interaction between I segment A and segment C was repulsive, whereas it was attractive between segment B and segment C. The simulation results showed that the blend became two large co-continuous phase domains at lower segment-B component compositions, indicating that the blend showed spinodal decomposition. With an increase of the segment-B component, the miscibility between the copolymer,and the polymer was gradually improved up to being miscible. In addition, it was found that segment B tended to move to the surface of the copolymer phase in the case of a lower component of segment B. On the other hand, if was observed that the average, end-to-end distances ((h) over bar) for both copolymer and polymer changed slowly with increasing segment-B component of the copolymer up to 40%, thereafter they increased considerably with increasing segment B component. Moreover, it was found that the (h) over bar of the copolymer was obviously shorter than that of the homopolymer for the segment-B composition, region from 0% to 80%. Finally, a, phase diagram showing I phase and - II phase regions under the condition of constant-temperature is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The perturbation method is developed to deal with the effective nonlinear dielectric responses of weakly nonlinear graded composites, which consist of the graded inclusion with a linear dielectric function of spatial variables of inclusion material. For Kerr-like nonlinear graded composites, as an example in two dimensions, we have used the perturbation method to solve the boundary value problems of potentials, and studied the effective responses of nonlinear graded composites, where a cylindrical inclusion with linear dielectric function and nonlinear dielectric constant is randomly embedded in a homogeneous host with linear and nonlinear dielectric constants. For the exponential function and the power-law dielectric profiles of cylindrical inclusions, in the dilute limit, we have derived the formulae of effective nonlinear responses of both graded nonlinear composites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The topic of this study is about the propagation features of elastic waves in the anisotropic and nonlinear media by numerical methods with high accuracy and stability. The main achievements of this paper are as followings: Firstly, basing on the third order elastic energy formula, principle of energy conservation and circumvolved matrix method, we firstly reported the equations of non-linear elastic waves with two dimensions and three components in VTI media. Secondly, several conclusions about some numerical methods have been obtained in this paper. Namely, the minimum suitable sample stepth in space is about 1/8-1/12 of the main wavelength in order to distinctly reduce the numerical dispersion resulted from the numerical mehtod, at the same time, the higher order conventional finite difference (CFD) schemes will give little contribution to avoid the numerical solutions error accumulating with time. To get the similar accuracy with the fourth order center finite difference method, the half truncation length of SFFT should be no less than 7. The FDFCT method can present with the numerical solutions without obvious dispersion when the paprameters of FCT is suitable (we think they should be in the scope from 0.0001 to 0.07). Fortunately, the NADM method not only can reported us with the higher order accuracy solutions (higher than that of the fourth order finite difference method and lower than that of the sixth order finite difference method), but also can distinctly reduce the numerical dispersion. Thirdly, basing on the numerial and theoretical analysis, we reported such nonlinear response accumulating with time as waveform aberration, harmonic generation and resonant peak shift shown by the propagation of one- and two-dimensional non-linear elasticwaves in this paper. And then, we drew the conclusion that these nonlinear responses are controlled by the product between nonlinear strength (SN) and the amplitude of the source. At last, the modified FDFCT numerical method presented by this paper is used to model the two-dimensional non-linear elastic waves propagating in VTI media. Subsequently, the wavelet analysis and polarization are adopted to investigate and understand the numerical results. And then, we found the following principles (attention: the nonlinear strength presented by this paper is weak, the thickness of the -nonlinear media is thin (200m), the initial energy of the source is weak and the anisotropy of the media is weak too): The non-linear response shown by the elastic waves in VTI media is anisotropic too; The instantaneous main frequency sections of seismic records resulted from the media with a non-linear layer have about 1/4 to 1/2 changes of the initial main frequency of source with that resulted from the media without non-linear layer; The responses shown by the elasic waves about the anisotropy and nonlinearity have obvious mutual reformation, namely, the non-linear response will be stronger in some directions because of the anisotropy and the anisotropic strength shown by the elastic waves will be stronger when the media is nonlinear.