185 resultados para Trophic diversity
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In a Chinese eutrophic shallow lake, the spatial, temporal and vertical distributions of meiofauna in different lake zones along a eutrophic gradient were analyzed. The spatial distribution of meiofauna among sampling stations changed with nutrient levels. Nematoda were most abundant at the majority of sampling stations comprising 70.6 - 93.2 % meiofaunal abundance except for a hypereutrophic station. The seasonal patterns in abundance of nematodes, oligochaetes, rotifers, chironomids and different nematode feeding groups differed among stations, which revealed that the temporal variations of these meiofaunal groups and the nematode feeding groups may vary with different nutrient loadings. The vertical distributions of meiofaunal groups, nematode species, and nematode trophic groups in the upper and lower sediment layers were similar, suggesting a consistent vertical distribution pattern across different trophic conditions. Nematode species richness, Shannon-Wiener species diversity index, trophic diversity and Maturity Index were significantly correlated with nutrient levels (total phosphorus and nitrogen in lake water and total phosphorus in sediment). Our results suggest the importance of nematode community analyses in the assessment of freshwater eutrophication.
Resumo:
Classical cultivation and molecular methods based on the ammonia monooxygenase gene (amoA) were used to study the abundance and diversity of beta-proteobacterial ammonia-oxidizing bacteria (AOB) in lake sediments. The eutrophic and oligotrophic basins of a Chinese shallow lake (Lake Donghu), in terms of ammonium (NH4+) concentrations, were sampled. The AOB number was significantly lower in the oligotrophic basin, but significantly higher in the eutrophic basin. In addition, using restriction fragment length polymorphism targeting the amoA, ten restriction patterns including six unique ones were found in the eutrophic basin, while five patterns were observed in the oligotrophic basin with only one unique restriction group. Phylogenetic analysis for AOB revealed that Nitrosomonas oligotropha- and Nitrosomonas ureae-related AOB and Nitrosospira-affiliated AOB were ubiquitous; the former dominated in the eutrophic basin (87.2%), while the latter dominated in the oligotrophic basin (65.5%). Furthermore, Nitrosomonas communis-related AOB was only detected in the eutrophic basin, at a small proportion (3.2%). These results indicate significant selection and adaptation of sediment AOB in lakes with differing trophic status. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
To collect information about the genetic diversity of the plankton community and to study how plankton respond to environmental conditions, plankton samples were collected from five stations representing different trophic levels in a shallow, eutrophic lake (Lake Donghu), and investigated by PCR-DGGE fingerprinting. A total of 100 bands (61 of 16S rDNA bands and 39 of 18S rDNA bands) were detected. The DGGE bands unique to any single station accounted for 38% of the total bands, whereas common bands detected at all five stations accounted for only 11%. Using UPGMA clustering and MDS ordination of DGGE fingerprints, stations I and II were found to initially group together into one cluster, which was later joined by station V. Stations III and IV were isolated into two separate groups of one station each. Some differences in grouping relationships were found when analysis was completed on the basis of chemical characteristics and morphological composition, with zooplankton composition showing the greatest variability. However, the most similar stations (I and II) were always initially grouped into one cluster. Moreover, stations that exhibited the same or similar trophic level (stations III and IV), but different concentrations of heavy metals, were further differentiated by the DGGE method. Results of the present study indicated that PCR-DGGE fingerprinting was more sensitive than the traditional methods, as other studies suggested. Additionally, PCR-DGGE appears to be more appropriate for diversity characterization of the plankton community, as it is more canonical, systematic, and effective. Most importantly, fingerprinting results are more convenient for the comparative analyses between different studies. Therefore, the use of the described fingerprinting analysis may provide an operable and sensitive biomonitoring approach to identify critical, and potentially negative, stress within an aquatic ecosystem.
Resumo:
The spatial distribution and morphological diversity of virioplankton were determined in Lake Donghu which contains three trophic regions: hypertrophic, eutrophic and mesotrophic region. Virioplankton abundance measured by transmission electron microscope (TEM) ranged from 7.7 x 10(8) to 3.0 x 109 ml(-1), being among the highest observed in any natural aquatic system examined so far. The spatial distribution of virioplankton was correlated significantly with chlorophyll a concentration (r = 0.847; P < 0.01) at the sampling sites in Lake Donghu. 76 morphotypes were observed. Most morphotypes have tails, belonging to Siphoviridae, Myoviridae and Podoviridae. The majority of tailed phages in the lake were Myoviridae. Morphotypes which were rarely reported, such as prolate-headed virus-like particles, lemon-shaped virus-like particle, and viruses resembling Tectiviridae and Corticoviridae were all observed in the lake. It is concluded that the high viral abundance might be associated with high density of phytoplankton including algae and cyanobacteria. There was high viral diversity in this eutrophic shallow lake. In addition, cyanophage represented an important fraction of the virioplankton community in Lake Donghu. (c) 2006 Elsevier SAS. All rights reserved.
Resumo:
We present a slice-sampling method and study the ensemble evolution of a large finite nonlinear system in order to model materials failure. There is a transitional region of failure probability. Its size effect is expressed by a slowly decaying scaling law. In a meso-macroscopic range (similar to 10(5)) in realistic failure, the diversity cannot be ignored. Sensitivity to mesoscopic details governs the phenomena. (C) 1997 Published by Elsevier Science B.V.