10 resultados para Transdiscplinary Theories

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three models, JKR (Johnson, Kendall and Roberts), DMT (Derjaguin, Muller, and Toporov) andMD (Maugis-Dugdale),are compared with the Hertz model in dealing with nano-contact problems. It has been shown that both the dimensionless load parameter, P D P=.1/4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new compatible finite element method for strain gradient theories is presented. In the new finite element method, pure displacement derivatives are taken as the fundamental variables. The new numerical method is successfully used to analyze the simple strain gradient problems – the fundamental fracture problems. Through comparing the numerical solutions with the existed exact solutions, the effectiveness of the new finite element method is tested and confirmed. Additionally, an application of the Zienkiewicz–Taylor C1 finite element method to the strain gradient problem is discussed. By using the new finite element method, plane-strain mode I and mode II crack tip fields are calculated based on a constitutive law which is a simple generalization of the conventional J2 deformation plasticity theory to include strain gradient effects. Three new constitutive parameters enter to characterize the scale over which strain gradient effects become important. During the analysis the general compressible version of Fleck–Hutchinson strain gradient plasticity is adopted. Crack tip solutions, the traction distributions along the plane ahead of the crack tip are calculated. The solutions display the considerable elevation of traction within the zone near the crack tip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness d(1), and lower layer thickness d(2), instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehautes plot for free surface waves if water depth ratio r = d(1)/d(2) approaches to infinity and the upper layer water density rho(1) to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of sigma = (rho(2) - rho(1))/rho(2) -> 1.0 and r > 1.0. In the end, several figures of the validity ranges for various interfacial wave theories in the two-layer fluid are given and compared with the results for surface waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiabatic shear localization is a mode of failure that occurs in dynamic loading. It is characterized by thermal softening occurring over a very narrow region of a material and is usually a precursor to ductile fracture and catastrophic failure. This reference source is the first detailed study of the mechanics and modes of adiabatic shear localization in solids, and provides a systematic description of a number of aspects of adiabatic shear banding. The inclusion of the appendices which provide a quick reference section and a comprehensive collection of thermomechanical data allows rapid access and understanding of the subject and its phenomena. The concepts and techniques described in this work can usefully be applied to solve a multitude of problems encountered by those investigating fracture and damage in materials, impact dynamics, metal working and other areas. This reference book has come about in response to the pressing demand of mechanical and metallurgical engineers for a high quality summary of the knowledge gained over the last twenty years. While fulfilling this requirement, the book is also of great interest to academics and researchers into materials performance.

Table of Contents

1Introduction1
1.1What is an Adiabatic Shear Band?1
1.2The Importance of Adiabatic Shear Bands6
1.3Where Adiabatic Shear Bands Occur10
1.4Historical Aspects of Shear Bands11
1.5Adiabatic Shear Bands and Fracture Maps14
1.6Scope of the Book20
2Characteristic Aspects of Adiabatic Shear Bands24
2.1General Features24
2.2Deformed Bands27
2.3Transformed Bands28
2.4Variables Relevant to Adiabatic Shear Banding35
2.5Adiabatic Shear Bands in Non-Metals44
3Fracture and Damage Related to Adiabatic Shear Bands54
3.1Adiabatic Shear Band Induced Fracture54
3.2Microscopic Damage in Adiabatic Shear Bands57
3.3Metallurgical Implications69
3.4Effects of Stress State73
4Testing Methods76
4.1General Requirements and Remarks76
4.2Dynamic Torsion Tests80
4.3Dynamic Compression Tests91
4.4Contained Cylinder Tests95
4.5Transient Measurements98
5Constitutive Equations104
5.1Effect of Strain Rate on Stress-Strain Behaviour104
5.2Strain-Rate History Effects110
5.3Effect of Temperature on Stress-Strain Behaviour114
5.4Constitutive Equations for Non-Metals124
6Occurrence of Adiabatic Shear Bands125
6.1Empirical Criteria125
6.2One-Dimensional Equations and Linear Instability Analysis134
6.3Localization Analysis140
6.4Experimental Verification146
7Formation and Evolution of Shear Bands155
7.1Post-Instability Phenomena156
7.2Scaling and Approximations162
7.3Wave Trapping and Viscous Dissipation167
7.4The Intermediate Stage and the Formation of Adiabatic Shear Bands171
7.5Late Stage Behaviour and Post-Mortem Morphology179
7.6Adiabatic Shear Bands in Multi-Dimensional Stress States187
8Numerical Studies of Adiabatic Shear Bands194
8.1Objects, Problems and Techniques Involved in Numerical Simulations194
8.2One-Dimensional Simulation of Adiabatic Shear Banding199
8.3Simulation with Adaptive Finite Element Methods213
8.4Adiabatic Shear Bands in the Plane Strain Stress State218
9Selected Topics in Impact Dynamics229
9.1Planar Impact230
9.2Fragmentation237
9.3Penetration244
9.4Erosion255
9.5Ignition of Explosives261
9.6Explosive Welding268
10Selected Topics in Metalworking273
10.1Classification of Processes273
10.2Upsetting276
10.3Metalcutting286
10.4Blanking293
 Appendices297
AQuick Reference298
BSpecific Heat and Thermal Conductivity301
CThermal Softening and Related Temperature Dependence312
DMaterials Showing Adiabatic Shear Bands335
ESpecification of Selected Materials Showing Adiabatic Shear Bands341
FConversion Factors357
 References358
 Author Index369
 Subject Index375

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general superresolution theories for uniform amplitude beams and intercepted Gaussian beams are investigated. For these two types of incident beam, both two-zone amplitude and pure-phase filters are adopted to provide specific numerical descriptions of their differences in superresolution performances. Simulated results of comparisons between their performances indicate that, with the same spot size ratio, the intercepted Gaussian beam achieves a higher central image brightness ratio and significantly lower side-lobe effect irrespective of the filter used. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The so-called hydrodynamic (HD) model on optical-phonon modes in superlattices is critically examined. Contrary to the HD model, a comparison between TM polaritons and the Fuchs-Kliewer-type interface modes has shown that the Fuchs-Kliewer interface modes do possess Frohlich potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f ( R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.