9 resultados para Tractors -- Wheels
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
提出全地形轮式移动机器人的正逆运动学问题。将机器人看成一个混合串-并联多刚体系统,从每个轮-地接触点到机器人车体分别构成一个串联子系统,抛弃车轮纯滚动假设,在轮-地接触点处建立瞬时坐标系,考虑车轮的平面滑移,从而对每个串联子系统形成一个封闭的速度链。对于每个速度闭链,可直接在驱动轮轮心处写出从机器人各驱动轮到机器人本体之间的运动方程,将每个速度闭链的运动方程合并即可得到机器人的整体运动学模型。以一个具有被动柔顺机构的六轮全地形移动机器人为对象进行推导,该方法既考虑了地形不平的影响,又考虑了车轮的前向、侧向及转向滑移,已知机构参数后就可以直接写出机器人的速度方程,且便于运动学求解。该方法对于轮式移动机器人的运动学建模具有一般性,且具有物理意义明确、推导过程简洁等特点。
Resumo:
“零力矩点”是判定仿人机器人动态稳定运动的重要指标。本文根据零力矩点的概念,利用机器人车体的几何及动力学关系,建立基于反作用力的正交轮式移动仿人机器人的零力矩点模型;提出了基于电流传感器、电机编码器等传感器的零力矩点的实时测量方法,并给出了该方法的结构框图。由于轮式移动仿人机器人与地面呈点式接触,难于安装力传感器,所以这种方法尤其适用于轮式移动仿人机器人。
Resumo:
设计了一种能够使蛇形机器人运动更灵巧、奇异点更少和运动能力更强的机构 ,对具有三个自由度的新型蛇形机器人单元进行了改进 ,在单元上增加被动轮机构 ,使其具有万向机构的特点。该单元不仅能够用被动轮驱动机器人运动 ,而且增加了类似于主动轮的驱动机构 ,克服了被动轮驱动能力弱的缺点 ,增强了机器人的运动能力。在分析非完整约束的基础上 ,对蛇形机器人的运动学和冗余度进行分析 ,提出了控制该类蛇形机器人运动的分解矩阵方法和分组交替运动法。
Resumo:
本文针对一类正交轮全方位移动机器人的机构特点 ,分析了运行中由于其结构因素引起机器人运动不稳定的主要原因 .针对此类结构运动过程存在的不确定扰动问题 ,分析了它的产生机理及其变化规律 ,并推导出在该种不确定性扰动影响下的移动机器人动力学模型 .该模型可为正交轮全方位移动机器人运动控制提供理论依据 ,具有较强的理论意义和应用价值
Resumo:
探讨了自动化与制造业的产生和互促发展过程 ,论述了自动化制造系统的形成和不同发展阶段的内涵及重大作用 ,指出自动化技术与制造技术是驱动自动化制造系统发展的两个轮子 ,不能忽视任何一个侧面 ,自动化研究与制造技术研究相结合是发展先进制造技术的必由之路
Resumo:
建立了两轮独立驱动自动引导车辆的运动学模型,计算了两轮以不同速度行驶时的运动轨迹。基于所建的运动学模型,提出了两轮驱动自动引导车的定位控制策略。通过试验证实,这种定位控制策略具有很快的停车速度和较高的定位精度。
Resumo:
基于车轮滑转率和车轮地面力学,研究了月球车在松软月面行驶时的车轮过度下陷问题.将月球车车轮下陷和车轮—土壤作用力表达为车轮滑转率的函数,结合车辆地面力学理论并考虑纵列式车轮多通过性土壤参数的修正,建立了月球车的动力学模型.判断车轮是否发生过度下陷的标准为土壤所提供给驱动轮的土壤推力能否克服土壤对车轮的阻力.利用建立的动力学模型,计算出能够保证车轮不会过度下陷的期望滑转率.考虑到月球车动力学系统的非线性和不确定性,设计了以车轮滑转率为状态变量的滑模驱动控制器.仿真结果表明,采用该控制器可以较快地跟踪期望滑转率,避免车轮的过度滑转下陷,保证月球车能够在软质路面上正常行驶.
Resumo:
应用车辆地面力学理论研究滑转率对月球车车轮挂钩牵引力、驱动效率以及功率消耗的影响。建立刚性车轮与松软月壤交互作用的动力学模型。通过实例对月球车车轮驱动动力学特性进行仿真分析。研究结果表明,车轮的挂钩牵引力、驱动效率以及驱动能耗均受到车轮滑转率的制约。存在一个最优的滑转率区间,在此区间内车轮可获得较大的挂钩牵引力、较高的驱动效率以及较低的驱动能耗。求取轮、地相对速度,对月球车车轮的地面摩擦力功率进行了估算。
Resumo:
结合车轮沙土相互作用的力学分析,研究解决轮式移动机器人沙地行驶车轮过度滑转下陷问题。考虑纵列式重复通过车轮沙土力学参数的修正,建立六轮式沙地移动机器人的动力学模型,以车轮滑转率为状态变量,设计了移动机器人沙地行驶的滑模驱动控制器跟踪车轮期望滑转率。MATLAB/Simulink仿真结果表明,采用该控制器可以较快地跟踪期望滑转率,有效地限制机器人车轮的滑转,避免车轮的过度下陷。