117 resultados para Traction force
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Strong mechanical forces can, obviously, disrupt cell-cell and cell-matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin-integrin interaction and integrin-ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin-ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin-ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force. PMID: 20542514
Resumo:
基于车轮滑转率和车轮地面力学,研究了月球车在松软月面行驶时的车轮过度下陷问题.将月球车车轮下陷和车轮—土壤作用力表达为车轮滑转率的函数,结合车辆地面力学理论并考虑纵列式车轮多通过性土壤参数的修正,建立了月球车的动力学模型.判断车轮是否发生过度下陷的标准为土壤所提供给驱动轮的土壤推力能否克服土壤对车轮的阻力.利用建立的动力学模型,计算出能够保证车轮不会过度下陷的期望滑转率.考虑到月球车动力学系统的非线性和不确定性,设计了以车轮滑转率为状态变量的滑模驱动控制器.仿真结果表明,采用该控制器可以较快地跟踪期望滑转率,避免车轮的过度滑转下陷,保证月球车能够在软质路面上正常行驶.
Resumo:
Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory and thrombotic processes. The rolling under hydrodynamic shear forces is a first step in directing leukocytes out of the blood stream into sites of inflammation and is mediated by the selectins, a family of extended, modular, and calcium-dependent lectin receptors. The interactions between P-, E-or L-selectins and their count.
Resumo:
Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.
Resumo:
A mechanical model of a laser transformation hardening specimen with a crack in the middle of the hardened layer is developed to quantify the effects of the residual stress and hardness gradient on crack driving force in terms of J-integral. It is assumed
Resumo:
In this paper, the possible error sources of the composite natural frequencies due to modeling the shape memory alloy (SMA) wire as an axial force or an elastic foundation and anisotropy are discussed. The great benefit of modeling the SMA wire as an axial force and an elastic foundation is that the complex constitutive relation of SMA can be avoided. But as the SMA wire and graphite-epoxy are rigidly bonded together, such constraint causes the re-distribution of the stress in the composite. This, together with anisotropy, which also reduces the structural stiffness can cause the relatively large error between the experimental data and theoretical results.
Resumo:
In this paper, a generalized JKR model is investigated, in which an elastic cylinder adhesively contacts with an elastic half space and the contact region is assumed to be perfect bonding. An external pulling force is acted on the cylinder in an arbitrary direction. The contact area changes during the pull-off process, which can be predicted using the dynamic Griffith energy balance criterion as the contact edge shifts. Full coupled solution with an oscillatory singularity is obtained and analyzed by numerical calculations. The effect of Dundurs' parameter on the pull-off process is analyzed, which shows that a nonoscillatory solution can approximate the general one under some conditions, i.e., larger pulling angle (pi/2 is the maximum value), smaller a/R or larger nondimensional parameter value of Delta gamma/E*R. Relations among the contact half width, the external pulling force and the pulling angle are used to determine the pull-off force and pull-off contact half width explicitly. All the results in the present paper as basic solutions are helpful and applicable for experimenters and engineers.
Resumo:
The morphological stability of epitaxial thin elastic films on a substrate by van der Waals force is discussed. It is found that only van der Waals force with negative Hamaker constant (A < 0) tends to stabilize the film, and the lower bound for the Hamaker constant is also obtained for the stability of thin film. The critical value of the undulation wavelength is found to be a function of both film thickness and external stress. The charateristic time-scale for surface mass diffusion scales to the fourth power to the wavelength of the perturbation.
Resumo:
The vibration analysis of an adhered S-shaped microbeam under alternating sinusoidal voltage is presented. The shaking force is the electrical force due to the sinusoidal voltage. During vibration, both the microbeam deflection and the adhesion length keep changing. The microbeam deflection and adhesion length are numerically determined by the iteration method. As the adhesion length keeps changing, the domain of the equation of motion for the microbeam (unadhered part) changes correspondingly, which results in changes of the structure natural frequencies. For this reason, the system can never reach a steady state. The transient behaviors of the microbeam under different shaking frequencies are compared. We deliberately choose the initial conditions to compare our dynamic results with the existing static theory. The paper also analyzes the changing behavior of adhesion length during vibration and an asymmetric pattern of adhesion length change is revealed, which may be used to guide the dynamic de-adhering process. The abnormal behavior of the adhered microbeam vibrating at almost the same frequency under two quite different shaking frequencies is also shown. The Galerkin method is used to discretize the equation of motion and its convergence study is also presented. The model is only applicable in the case that the peel number is equal to 1. Some other model limitations are also discussed.
Resumo:
Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly governed by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.
Resumo:
Capillary forces are significantly dominant in adhesive forces measured with an atomic force microscope (AFM) in ambient air, which are always thought to be dependent on water film thickness, relative humidity, and the free energy of water film. We study the nature of the pull-off force on a variety of surfaces as a function of tip velocity. It is found that the capillary forces are of relatively strong dependence on tip velocity. The present experiment is expected to provide a better understanding of the work mechanism of AFM in ambient air.
Resumo:
Using the constitutive equation of a rubber-like materials given by Gao (1997), this paper investigates the problem of a cone under tension of a concentrated force at its apex. Under consideration is the axial-symmetry case and the large strain is taken into account. The stress strain fields near the apex are obtained by both asymptotic analysis and finite element calculation. The two results are consistent well. When the cone angle is 180 degrees, the solution becomes that of non-linear Boussinesq's problem for tension case.
Resumo:
The adsorption and competitive adsorption of collagen and bovine serum albumin (BSA) were directly visualized and quantified using atomic force microscopy (AFM) and imaging ellipsometry. Chemically modified silicon surfaces were used as hydrophilic and hydrophobic substrates. The results showed that collagen and BSA in single component solution adsorbed onto a hydrophobic surface two times more than that onto a hydrophilic surface. The competitive adsorption between collagen and BSA showed that serum albumin preferentially adsorbed onto a hydrophobic surface, while collagen on a hydrophilic surface. In the binary solution of BSA (1 mg/ml BSA) and collagen (0.1 mg/ml), nearly 100% of the protein adsorbed onto the hydrophobic surface was BSA, but on the hydrophilic surface only about 6% was BSA. Surface affinity was the main factor controlling the competitive adsorption.
Resumo:
The model and analysis of the cantilever beam adhesion problem under the action of electrostatic force are given. Owing to the nonlinearity of electrostatic force, the analytical solution for this kind of problem is not available. In this paper, a systematic method of generating polynomials which are the exact beamsolutions of the loads with different distributions is provided. The polynomials are used to approximate the beam displacement due to electrostatic force. The equilibrium equation offers an answer to how the beam deforms but no information about the unstuck length. The derivative of the functional with respect to the unstuck length offers such information. But to compute the functional it is necessary to know the beam deformation. So the problem is iteratively solved until the results are converged. Galerkin and Newton-Raphson methods are used to solve this nonlinear problem. The effects of dielectric layer thickness and electrostatic voltage on the cantilever beamstiction are studied.The method provided in this paper exhibits good convergence. For the adhesion problem of cantilever beam without electrostatic voltage, the analytical solution is available and is also exactly matched by the computational results given by the method presented in this paper.
Resumo:
The aggregates in lysozyme solution with different NaCl concentration were investigated by Atomic Force Microscope (AFM). The AFM images show that there exist lysozyme monomers, n-mers and clusters in lysozyme solution when the conditions are not suitable for crystal growth. In favorable conditions for crystal growth, the lysozyme clusters disappear and almost only monomers exist in solution.