165 resultados para Toxic plants

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to investigate the allelopathic activities between 3 Potamogeton spp. (Potamogeton maackianus, Potamogeton malaianus and Potamogeton pectinatus) and the toxic cyanobacteria (Microcystis aeruginosa). All Potamogeton spp inhibited the growth of M. aeruginosa in both coexistence and exudates experiments. Inhibition of M. aeruginosa growth by plant exudates depended strongly on the biomass of P malaianus. Initial pH (6.5-9.8) did not influence the inhibitory effects of P. malaianus exudates. However, the M. aeruginosa inhibited the net photosynthesis and respiration of all three pondweed test spp.. The decreases in photosynthesis and respiration were probably caused by the toxic compounds released by M. aeruginosa, rather than its shading effects. The M. aeruginosa also decreased the nutrients (phosphorus and nitrogen) uptake rates of macrophytes. The absorption rates of phosphorus and nitrogen and net photosynthesis were decreased sharply. These results will help to restore submerged plants in eutrophic waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Goal, Scope and Background. As one of the consequences of heavy metal pollution in soil, water and air, plants are contaminated by heavy metals in some parts of China. To understand the effects of heavy metals upon plants and the resistance mechanisms, would make it possible to use plants for cleaning and remediating heavy metal-polluted sites. Methods. The research results on the effects of heavy metals on plants and resistant mechanisms are compiled from Chinese publications from scientific journals and university journals, mostly published during the last decade. Results and Discussion. Effects of heavy metals on plants result in growth inhibition, structure damage, a decline of physiological and biochemical activities as well as of the function of plants. The effects and bioavailability of heavy metals depend on many factors, such as environmental conditions, pH, species of element, organic substances of the media and fertilization, plant species. But, there are also studies on plant resistance mechanisms to protect plants against the toxic effects of heavy metals such as combining heavy metals by proteins and expressing of detoxifying enzyme and nucleic acid, these mechanisms are integrated to protect the plants against injury by heavy metals. Conclusions. There are two aspects on the interaction of plants and heavy metals. On one hand, heavy metals show negative effects on plants. On the other hand, plants have their own resistance mechanisms against toxic effects and for detoxifying heavy metal pollution. Recommendations and Outlook. To study the effects of heavy metals on plants and mechanisms of resistance, one must select crop cultivars and/or plants for removing heavy metals from soil and water. More highly resistant plants can be selected especially for a remediation of the pollution site. The molecular mechanisms of resistance of plants to heavy metals should be studied further to develop the actual resistance of these plants to heavy metals. Understanding the bioavailability of heavy metals is advantageous for plant cultivation and phytoremediation. Decrease in the bioavailability to farmlands would reduce the accumulation of heavy metals in food. Alternatively, one could increase the bioavailability of plants to extract more heavy metals.

Relevância:

20.00% 20.00%

Publicador: