3 resultados para Tourmaline.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Heavy mineral assemblages, chemical compositions of diagnostic heavy minerals such as garnet and tourmaline, and U-Pb ages and Hf isotopic compositions of zircons are very effective means to determine sediment provenance. An integrated application of the above provides insight on the lithologies, crystallization ages and crustal formation ages of the parent magma of sediment source areas. As a result, the locations and characteristics of potential source areas can be constrained and contributions of different source regions may be evaluated. In addition, the study provides evidence for the magmatic and tectonic history of source areas using a novel approach. The heavy mineral assemblages, and chemical compositions of detrital garnets and tourmalines, U-Pb ages and Hf isotopic compositions of zircons for sand and loess samples deposited since the Last Glacial Maximum (LGM) from the Hulunbeier, Keerqin and Hunshandake sandlands were analyzed and compared to those of central-southern Mongolia, the central Tarim and surrounding potential source areas, the Central Asian Orogenic Belt (CAOB) and North China Craton (NCC). The following remarks on provenance and tectonic history can be made: 1. The source compositional characteristics of the Hulunbeier, Keerqin and Hunshandake sandlands are similar. They are derived from the CAOB and NCC whose contributions for the Keerqin and Hunshandake sandland are about 50%. For the Hulunbeier sandland it is somewhat less, about 40%. 2. Loesses around of the sandlands have the identical source signiture as the sands, implying that they are sorted by the same wind regime. 3. The source characteristics of the present and LGM sands are the same, providing direct evidence that the present sands originated from the reworking of LGM sands. 4. The provenance characteristics of the three sandlands differ from those of the Tarim. As a result, the possibility that the three eastern sandlands were sourced from the Taklimakan desert can be ruled out. 5. The source compositions of sand samples derived from the CAOB indicate that the occurrence of Archean and Paleoproterozoic metamorphic basement rocks is limited and continuous subduction-accretion events from the Neoproterozoic to the Mesozoic occurred. This implies that the CAOB is a orogenic collage belt similar to the present day southwest-Pacific, and formed by the amalgamation of small forearc and backarc ocean basins occurring between island arcs and microcontinents during continuous collision and accretion. The Hf isotopic signitures of detrital zircons indicate that large amounts of juvenile mantle materials were added to the CAOB crust during the Phanerozoic.
Resumo:
The West Shandong Uplift and its adjacent basins, with same evolutional history before Mesozoic, are an important basin-orogenic systems in North China. After late Mesozoic, tectonic differentiation between basin and orogenic belt gradually displayed in the study area. The Boxing sag is a part of Jiyang Depression near to West Shandong Uplift, in which the whole Mesozoic and Cenozoic strata are preserved. Based on the analysis of sedimentary records in the Boxing sag, the Cenozoic structural and sedimentary evolutions in Boxing Sag and its response to Western Shandong uplift are discussed in this dissertation. The main conclusions in this research are presented as follows. Based on Seismic and well logging profile interpretation, fault growth index, thickness difference between bottom wall and top wall and fault activity rate from Eocene to Pliocene are studied. Boxing sag had three main faults, NE, NW and NEE trending faults. Research shows that the activity of the NW trending fault in the Boxing sag became weaken from E1-2S4 to N2m gradually. The evolution of NE and the NEE trending fault can be divided into three episodes, from E1-2k to E2s4, from E2s3 to E3s1, from N2m to E3d. The analysis of Paleogene samples of heavy mineral assemblages shows that metamorphic rocks represented by garnet, intermediate-acid igneous rocks represented by the assemblage of apatite, zircon and tourmaline became less from E1-2k to N2g, and sedimentary rocks represented by the assemblage of pyrite, barite and limonite also became less. Intermediate-basic igneous rocks represented by the assemblage of leucoxene, rutile and ilmenite and metamorphic rocks represented by epidote became more and more. Electronic microprobe analysis shows that glaucophane and barroisite are existed in Kongdian Formation and the 4th member of Shahejie Formation, and they demonstrate that Western Shandong and Eastern Shandong are all the source regions of the Boxing Sag, and they also indicate that oceanic crust existed before the collision between the Yangtze and North China continent. The fact that Eastern Shandong is the source region of Boxing Sag also indicates that Western Shandong was not high enough to prevent sediment from Eastern Shandong at E1-2k and E2s4. The results of the dating of five detrital zircons of Boxing Sag show Kongdian Formation and the 4th member of Shahejie Formation have the age peaks of 2800Ma and 700-800. It means that Eastern Shandong is the source region of Boxing Sag at early Paleogene and Western Shandong is not high enough to prevent the sediment from Eastern Shandong. The ages of 160-180 and 220-260 Ma, which exist in the Guantao Formation and Paleogene, are common in Eastern Shandong and rare in Western Shandong,and it implied that Western Shandong is a low uplift at 24Ma. The Paleogene strata have almost same age groups, while the Guantao Formation has significant variations of age groups, and this indicates that Boxing Sag and Western Shandong uplift had taken place tremendous changes. The results of apatite fission track in Boxing sag show that three times uplifts happened at the source region at 60 Ma, 45Ma and 15Ma respectively, and the Boxing sag experienced two subsidences at 60Ma, 45Ma and one uplift at 20Ma.
Resumo:
Daolangheduge copper polymetallic deposit is located on east edge of Ondor Sum-Bainaimiao metallogenic belt, which is a prospective area of porphyry copper deposit, in Xianghuangqi of central Inner Mongolia. Geotectonically, it occurred in the continental margin accretion belt along the north margin of North China Plate, south of the suture zone between North China Plate and Siberian Plate. The intrusive rocks in this area mainly consist of intermediate-acid magmatic rocks, and the quartz veins, tourmaline veins and the transitional phase are comparatively developed. According to our research, the ore-bearing rock body is mainly quartz diorite while the surrounding rock is mainly biotite granite. Besides, the wall rock alteration are mainly propylitization, pyritization and silicification, which consist of epidotization, actinolitization, chloritzation and so on. The metallic minerals are mainly chalcopyrite and pyrite. In addition, the primary ore is mainly of quartz-chalcopyrite-pyrite type. Above all, Daolangheduge copper polymetallic deposit is suggested to be categorized in the porphyry copper type. With isotopic dating and geochemical research on quartz diorite of ore-bearing rock body, the zircon LA-ICP-MS U-Pb dating of two samples yields an age of 266±2 Ma, falling into the range of late Permian Epoch. It is the first accurate age data in Xianghuangqi area, so it should play a key role in the research of deposit and magmatic rocks in this area. With the major elements and trace elements analysis of 14 samples, the quartz diorite should be among the calc-alkaline series, the geochemical characteristics show higher large-ion lithophile elements of Rb, Sr and LREE, low high-field strength elements of Nb, Ta and high transition elements of Cu, Cr . Also, the REE patterns have negative Eu anomalies. With the same analysis of 4 sample for the biotite granite, the geochemical characteristics show higher Rb, Th,, Zr, Hf and LREE, low Nb, Sm and HREE and Eu has no anomaly. It should be among the calc-alkaline series, over aluminum quality and has characteristics of Adakites. According to isotopic dating and geochemical characteristics of ore-bearing rock body, it is suggested that its materials mainly derived from upper mantle that had fractional crystallization and its magma source region may be affected by fluid metasomatism of paleo-asian ocean. It should be an extensional process of post-orogeny according to regional tectonic evolution. Consequently, because of the decrease of temperature and pressure, the ore forming fluid was raised to surface and mineralized accompanied by magmatic activity which might occur in south of the suture zone. By geological survey, further geophysical and geochemical work is needed. In this area, we have accomplished high precision magnetic prospecting, high density electrical survey, gravity prospecting, soil geochemical prospecting, X-ray fluorescence analyzer prospecting and so on. According to geophysical and geochemical abnormal and surface occurrence, 11 drills are arranged to verification. The type of ores are mainly quartz-chalcopyrite-pyrite ores within 3 drills by drill core logging. Although the grade as well as the scale of already-found Cu deposits are insufficient for industrial exploitation, the mineralization prospect in this region is supposed to be great and the potential in mineral exploration at depth is excellent.