27 resultados para Topologically Massive Yang-Mills
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
详细评述了缺陷连续统的规范场理论,该理论是近代材料科学和固体力学中新发展起来颇有意义的一个分支。首先强调了Noether定理及其逆定理在构造缺陷规范场理论中的重要性。同时基于Yang-Mills普适规范场构造,包括对SO(3)T(3)群的最小替换和最小耦合原理,系统地介绍了Golebiewska-Lasota,Edelen,Kadic和Edelen等人的原始性工作及他们的贡献。本文表明,Kadic和Edelen的理论是基于一组缺陷动力学的线性连续性方程发展起来的,不能和关于缺陷场的现有几何理论完全协调起来。考虑到这一点,本文提供了另一种方法来建立非线性弹性规范场的相应理论,这里考虑了Poincaré规范群SO(3)T(3).采用类似于研究引力场理论的Kibble方法,导出了缺陷连续统的拉氏密度。非完整坐标变换和非欧联络系数在数学上完全等价于子Poincaré群SO(3)T(3)的规范场。因此,本文的规范场理论和4维物质流形的缺陷场的非线性几何理论是完全一致的,并证明在弱缺陷条件下,可以简化到Kadic和Edelen的结果。
Resumo:
We investigate the decomposition of noncommutative gauge potential (A) over cap (i), and find that it has inner structure, namely, (A) over cap (i) can he decomposed in two parts, (b) over cap (i) and (a) over cap (i), where (b) over cap (i) satisfies gauge transformations while (a) over cap (i) satisfies adjoint transformations, so close the Seiberg-Witten mapping of noncommutative, U(1) gauge potential. By, means of Seiberg-Witten mapping, we construct a mapping of unit vector field between noncommutative space and ordinary space, and find the noncommutative U(1) gauge potential and its gauge field tensor can be expressed in terms of the unit vector field. When the unit vector field has no singularity point, noncommutative gauge potential and gauge field tensor will equal ordinary gauge potential and gauge field tensor
Resumo:
We investigate the solitons in the CPN supercript stop model in terms of the decomposition of gauge potential. Based on the phi-mapping topological current theory, the charge and position of solitons is determined by the properties of the typical component. Furthermore, the motion and the bifurcation of multi-soliton is discussed. And the knotted solitons in high dimension is explored also.
Resumo:
A numerical model for shallow-water equations has been built and tested on the Yin-Yang overset spherical grid. A high-order multimoment finite-volume method is used for the spatial discretization in which two kinds of so-called moments of the physical field [i.e., the volume integrated average ( VIA) and the point value (PV)] are treated as the model variables and updated separately in time. In the present model, the PV is computed by the semi-implicit semi-Lagrangian formulation, whereas the VIA is predicted in time via a flux-based finite-volume method and is numerically conserved on each component grid. The concept of including an extra moment (i.e., the volume-integrated value) to enforce the numerical conservativeness provides a general methodology and applies to the existing semi-implicit semi-Lagrangian formulations. Based on both VIA and PV, the high-order interpolation reconstruction can only be done over a single grid cell, which then minimizes the overlapping zone between the Yin and Yang components and effectively reduces the numerical errors introduced in the interpolation required to communicate the data between the two components. The present model completely gets around the singularity and grid convergence in the polar regions of the conventional longitude-latitude grid. Being an issue demanding further investigation, the high-order interpolation across the overlapping region of the Yin-Yang grid in the current model does not rigorously guarantee the numerical conservativeness. Nevertheless, these numerical tests show that the global conservation error in the present model is negligibly small. The model has competitive accuracy and efficiency.
Resumo:
Wasp is an impor tant venomous animal that can induce human fatalities. Aortic thrombosis and cerebral infarction are major clinical symptoms after massive wasp stings but the reason leading to the envenomation manifestation is still not known. In this paper, a toxin protein is purified and characterized by Sephadex G-75 gel filtration, CM-Sephadex C-25 cationic exchange and fast protein liquid chromatography (FPLC) from the venom of the wasp, Vespa magnifica (Smith). This protein, named magnifin, contains phospholipase-like activity and induces platelet aggregation. The cDNA encoding magnifin is cloned from the venom sac cDNA library of the wasp. The predicted protein was deduced from the cDNA with a sequence composed of 337 amino acid residues. Magnifin is very similar to other phospholipase A(1) (PLA(1)), especially to other wasp allergen PLA(1). Magnifin can activate platelet aggregation and induce thrombosis in vivo. The current results proved that PLA(1) in wasp venom could be contributable to aortic thrombosis after massive wasp stings. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped superscaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000 - 40,000. Only 2% - 3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism ( SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.
Resumo:
According to Chen's theory, topological differences are perceived faster than feature differences in early visual perception. We hypothesized that topological perception is caused by the sensitivity in discriminating figures with and without "holes". An E