23 resultados para Tool path computing
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
离散三角网格模型在CAD/CAM中应用很广,但针对该模型的刀位轨迹自动生成算法并不多见。在正确重建网格模型的拓扑关系基础上,给出了新的曲面几何特性分析方法,并提出了具有特色的精确的刀位轨迹计算方法,克服了直接由网格模型求交计算刀位方式存在的精度问题。测试结果显示,该方法简捷、可靠,能够达到实用化要求,并显著提高了刀位计算精度和加工效果。
Resumo:
The effects of electron beam surface hardening treatment on the microstructure and hardness of AISI D3 tool steel have been investigated in this paper. The results showed that the microstructure of the hardened layer consisted of martensite, a dispersion
Resumo:
Research and field experience have shown that well-path control is important in many cases, not only to reach the desired coordinates, but also to arrive at the well completion target from the preferred trajectory.
Resumo:
Under optimized operating parameters, a hard and wear resistant ( Ti,Al)N film is prepared on a normalized T8 carbon tool steel substrate by using pulsed high energy density plasma technique. Microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Hardness profile and tribological properties of the film are tested with nano-indenter and ring-on-ring wear tester, respectively. The tested results show that the microstructure of the film is dense and uniform and is mainly composed of ( Ti,Al)N and AlN hard phases. A wide transition interface exists between the film and the normalized T8 carbon tool steel substrate. Thickness of the film is about 1000 nm and mean hardness value of the film is about 26GPa. Under dry sliding wear test conditions, relative wear resistance of the ( Ti,Al)N film is approximately 9 times higher than that of the hardened T8 carbon tool steel reference sample. Meanwhile, the ( Ti,Al)N film has low and stable friction coefficient compared with the hardened T8 carbon tool steel reference sample.
Resumo:
The LURR theory is a new approach for earthquake prediction, which achieves good results in earthquake prediction within the China mainland and regions in America, Japan and Australia. However, the expansion of the prediction region leads to the refinement of its longitude and latitude, and the increase of the time period. This requires increasingly more computations, and the volume of data reaches the order of GB, which will be very difficult for a single CPU. In this paper, a new method was introduced to solve this problem. Adopting the technology of domain decomposition and parallelizing using MPI, we developed a new parallel tempo-spatial scanning program.
Resumo:
A simple geometry model for tortuosity of flow path in porous media is proposed based on the assumption that some particles in a porous medium are unrestrictedly overlapped and the others are not. The proposed model is expressed as a function of porosity and there is no empirical constant in this model. The model predictions are compared with those from available correlations obtained numerically and experimentally, both of which are in agreement with each other. The present model can also give the tortuosity with a good approximation near the percolation threshold. The validity of the present tortuosity model is thus verified.
Resumo:
Crack paths in an elastic layer on top of a substrate are considered. Crack growth is initiated from an edge crack in the layer. The plane of the initially straight crack forms an angle to the free surface. The load consists of a pair of forces applied at the crack mouth and parallel to the interface. Crack paths are calculated using a boundary element method. Crack growth is assumed to proceed along a path for which the mode II stress intensity factor vanishes. The inclination and the length of the initial crack are varied. The effect of two different substrates on the crack path evolution is demonstrated. A crack path initially leading perpendicularly to the interface is shown to be directionally unstable for a rigid substrate. Irrespective of its initial angle, the crack does not reach the interface, but reaches the free surface if the layer is infinitely long. At finite layer length the crack reaches the upper free surface if the initial crack inclination to the surface is small enough. For an inextendable flexible substrate, on the other hand, the crack reaches the interface if its initial inclination is large enough. For the flexible substrate an unstable path parallel with the sides of an infinitely long layer is identified. The results are compared with experimental results and discussed in view of characterisation of directionally unstable crack paths. The energy release rate for an inclined edge crack is determined analytically.
Resumo:
An optimal algorithm of manufacturing path planner for intelligent laser surface modification is presented. Elements included in the optimal objective have been analyzed. A 6-D manufacture trace that satisfies the requirements of special craft and 5-axis laser processing robot system has been generated from the path planner by method of parallel section in which combinations of modification spots size with curvature of processing surfaces and modification craft parameters are considered. Related experiments have been successfully carried out with the computer integrated multifunctional laser manufacturing system.
Resumo:
Large size bulk silicon carbide (SiC) crystals are commonly grown by the physical vapor transport (PVT) method. The PVT growth of SiC crystals involves sublimation and condensation, chemical reactions, stoichiometry, mass transport, induced thermal stress, as well as defect and micropipes generation and propagation. The quality and polytype of as-grown SiC crystals are related to the temperature distribution inside the growth chamber during the growth process, it is critical to predict the temperature distribution from the measured temperatures outside the crucible by pyrometers. A radio-frequency induction-heating furnace was used for the growth of large-size SiC crystals by the PVT method in the present study. Modeling and simulation have been used to develop the SiC growth process and to improve the SiC crystal quality. Parameters such as the temperature measured at the top of crucible, temperature measured at the bottom of the crucible, and inert gas pressure are used to control the SiC growth process. By measuring the temperatures at the top and bottom of the crucible, the temperatures inside the crucible were predicted with the help of modeling tool. SiC crystals of 6H polytype were obtained and characterized by the Raman scattering spectroscopy and SEM, and crystals of few millimeter size grown inside the crucible were found without micropipes. Expansion of the crystals were also performed with the help of modeling and simulation.
Resumo:
The MID-K, a new kind of multi-pipe string detection tool is introduced. This tool provides a means of evaluating the condition of in-place pipe string, such as tubing and casino. It is capable of discriminating the defects of the inside and outside, and estimating the thickness of tubing and casing. It is accomplished by means of a low frequency eddy current to detect flaws on the inner surface and a magnetic flux leakage to inspect the full thickness. The measurement principle, the technology and applications are presented in this paper.
Resumo:
For better understanding the mechanism of the occurrence of pipeline span for a pipeline with initial embedment, physical and numerical methods are adopted in this study. Experimental observations show that there often exist three characteristic phases in the process of the partially embedded pipeline being suspended: (a) local scour around pipe; (b) onset of soil erosion beneath pipe; and (c) complete suspension of pipe. The effects of local scour on the onset of soil erosion beneath the pipe are much less than those of soil seepage failure induced by the pressure drop. Based on the above observations and analyses, the mechanism of the occurrence of pipeline spanning is analyzed numerically in view of soil seepage failure. In the numerical analyses, the current-induced pressure along the soil surface in the vicinity of the pipe (i.e. the pressure drop) is firstly obtained by solving the N-S equations, thereafter the seepage flow in the soil is calculated with the obtained pressure drop as the boundary conditions along the soil surface. Numerical results indicate that the seepage failure (or piping) may occur at the exit of the seepage path when the pressure gradient gets larger than the critical value. The numerical treatment provides a practical tool for evaluating the potentials for the occurrence of pipe span due to the soil seepage failure.
Resumo:
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
Resumo:
We investigate high-order harmonic emission and isolated attosecond pulse (IAP) generation in atoms driven by a two-colour multi-cycle laser field consisting of an 800 nm pulse and an infrared laser pulse at an arbitrary wavelength. With moderate laser intensity, an IAP of similar to 220 as can be generated in helium atoms by using two-colour laser pulses of 35 fs/800 nm and 46 fs/1150 nm. The discussion based on the three-step semiclassical model, and time-frequency analysis shows a clear picture of the high-order harmonic generation in the waveform-controlled laser field which is of benefit to the generation of XUV IAP and attosecond electron pulses. When the propagation effect is included, the duration of the IAP can be shorter than 200 as, when the driving laser pulses are focused 1 mm before the gas medium with a length between 1.5 mm and 2 mm.
Resumo:
We theoretically demonstrate the selective enhancement of high-order harmonic generation (HHG) in two-color laser fields consisting of a single-cycle fundamental wave (800 nm wavelength) and a multicycle subharmonic wave (2400 nm wavelength). By performing time-frequency analyses based on a single-active-electron model, we reveal that such an enhancement is a result of the modified electron trajectories in the two-color field. Furthermore, we show that selectively enhanced HHG gives rise to a bandwidth-controllable extreme ultraviolet supercontinuum in the plateau region, facilitating the generation of intense single isolated attosecond pulses.