68 resultados para Tm^3

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tm^3Yb^3nSiO2-030nPbF2-050n=Al2O3=015nAlF3=0049-xnTmF3=ynYbF3=xx=00001001000150020y=00001970nmTm^3Yb^3452n

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tm^3+Yb^3+RamanTm^3+Yb^3+Tm^3+Yb^3+Tm^3+Yb^3+

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yb2O3Tm^3Yb^3980nm475nm649nmTm^3^1G4^3H6^1G4^3F4Yb2O3Yb^3Yb^3Tm^3Yb2O33

Relevância:

100.00% 100.00%

Publicador:

Resumo:

35SiO215AlO1.5-45-xPbF2-xCdF201TmF315YbF3x=0102030CdF2CdF2PbFCdF2Tm^3

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tm3+/Yb3+-codoped heavy metal oxide-halide glasses have been synthesized by conventional melting and quenching method. Structural properties were obtained based on the Raman spectra, indicating that halide ion has an important influence on the phonon density and maximum phonon energy of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. With increasing halide content, the up-conversion luminescence intensity and blue luminescence lifetimes of Tm3+ ion increase notably. Our results show that with the substitution of halide ion for oxygen ion, the decrease of phonon density and maximum phonon energy of host glasses both contribute to the enhanced up-conversion emissions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

- (Y1 -x- yTbxTmy) 3Al5O1 2 ,Tb3+ ,Tb3+Tm3+

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

,.Y_(1-x-0.3)Er_(0.3)Tm_xP_5O_(14)(x=0.010.1),,.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MoSb_2O_5R_2O_3R'_2O_3Bi_2O_3Bi~(3+)ThorntonBa_2BiSbO_6Ba_2GdSbO_6EECEHKOM_2RSbO_6 (M = BaSrCa, R = La Y)M_2RSbO_6Sm~(3+)Eu~(3+)Dy~(3+)Ho~(3+)Er~(3+)Tm~(3+)Bi~(3+)Bi~(3+)X-M_2RSbO_6(M = BaSrR = LaYGdBi)Fm3mOhCa_2YSbO_6P_(21)M_2RSbO_6 (M = BaSrCa; R = GdYBi)Ba_2GdSbO_6Sb_2O_5M_2RSbO_6Sb_2O_3520 Sb_2O_5Eu~(3+)Ba_2YSbO_6:Eu~(3+)Br_2YSbO_6:Eu~(3+), Bi~(3+)254nmEu~(3+)595nmBi~(3+)325nmBi~(3+)Eu~(3+)Eu~(3+)595nmBi~(3+)Eu~(3+)Bi~(3+)~1S 3P_1Eu~(3+)~5D_0~5D_0 7F_1Eu~(3+)Sr_2YSbO_6:Eu~(3+)Sr_2YSbO_6:Eu~(3+), Bi~(3+)245nmEu~(3+)595nmBi~(3+)335nmBi~(3+)Eu~(3+)Ba_2YSbO_6:Eu~(3+)Ba_2YSbO_6:Eu~(3+), Bi~(3+)Eu~(3+)Ca_2YSbO_6:Eu~(3+)Ca_2YSbO_6:Eu~(3+), Bi~(3+)396nmEu~(3+)613nmBi~(3+)313nmBi~(3+)Eu~(3+)Bi~(3+)3P_1 ~1S_0400nmEu~(3+)~7F_0 ~5L_6396nm~5L_6~5D_0~7F_2Ca_2Y_(0.96)Eu_(0.04)SbO_6Eu~(3+)Eu~(3+)Fm3m Ba_2YSbO_6Sr_2YSbO_6Oh~5D_0 ~7F_1Eu~(3+)P_(21)~5D_0 ~7F_2M_2YSbO_6:R~(13+)(M = BaCa; R' = SmDyHoErTm)Sm~(3+)Dy~(3+)Ho~(3+)Bi~(3+)Ca_2YSbO_6:Bi~(3+)Bi~(3+)240nm~1S_0 ~1P_1315nm~1S_0 ~3P_1400nm~3P_1 ~1S_0

Relevância:

70.00% 70.00%

Publicador:

Resumo:

N_2-H_2M_2~ICO_3 + M_3~(II)(PO_4)_2 + M_2~(III)O_3 + (NH_4)_2HPO_4 + M~(II)F_2 M_x~IM_(10-2x)~(II)M_x~(III)(PO_4)_6F_2 + NH_3 + H_2OM~I = Li~+, Na~+, K~+; M~(II) = Ca~(2+), Sr~(2+); M~(III) = Y~(3+), La~(3+), Gd~(3+); X = 0.5, 1, 2, 3XEu~(3+)M_(10)~(II)(PO_4)_6F_2(Pb_3/m)ac9.416.89 AM~I, M~(II)M~(III)XCe~(3+)Na_2Ca_6La_2(PO_4)_6F_2Ce~(3+)Ce~(3+)-Mn~(2+), Ce~(3+)-Re~(3+) (Re~(3+) = Pr~(3+)Nd~(3+)Sm~(3+)Tb~(3+)Dy~(3+)Tm~(3+)Ho~(3+)Er~(3+))Ce~(3+)-Mn~(2+)-Re~(3+) (Re~(3+) = Dy~(3+), Nd~(3+))Na_2Ca_6La_2(PO_4)_6F_2:Ce~(3+)338358nm~2D-~2F_(5/2)~2D-~2F_(1/2)~2D-~2F_(6/2)~2D-~2F_(7/2)Ce~(3+)F~-Ce~(3+)-Ce~(3+)Ce~(3+)Mn~(2+)Ce~(3+)Re~(3+)A. Ce~(3+)-Sm~(3+)Tb~(3+)Dy~(3+)Tm~(3+)BCe~(3+)-Nd~(3+)Pr~(3+)C. Ce~(3+)-Ho~(3+), Er~(3+)ABCe~(3+)(_T)_A > (_T)_BCe~(3+)-Ho~(3+)Ce~(3+)-Er~(3+)Ho~(3+)Er~(3+)Ce~(3+)Ce~(3+)-Mn~(2+)-Re~(3+)Ce~(3+)Mn~(2+)Re~(3+)Ce~(3+)-Mn~(2+)-Re~(3+)Ce~(3+)-Mn~(2+)Ce~(3+)-Re~(3+)Ce~(3+)-Mn~(2+)-Re~(3+)M. YokataCe~(3+)Ce~(3+)-Mn~(2+)Ce~(3+)-ReCe~(3+)-Mn~(2+))-Re~(3+)Ce~(3+)Ce~(3+)Ce~(3+)(_f, _R)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Er^3+Tm^3+/Yb^3+Raman980nmLD(476nm)(530nm545nm)(656nm)(476nm)Tm^3+1^G43^3H6(530nm545nm)Er^3+2^H11/24^I1524^S3/24^I15/2(6

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AlPO33AlPO33AlPO3379AlPO33Tm^3^3H6^3F4LT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Er3+, Yb3+ and Tm3+ codoped fluorophosphate glasses emitting blue, green and red upconversion luminescence at 970 nm laser diode excitation were studied. It was shown that Tm3+ behaves as the sensitizer to Er3+ for the green upconversion luminescence through the energy transfer process: Tm 3+:H-3(4) + Er3+:I-4(15/2) -> Er3+:I-4(9/2) + Tm3+:H-3(6), and for the red upconversion luminescence through the energy transfer process: Tm3+:F-3(4) + Er3+:I-4(11/2) -> TM3+:H-3(6) + Er3+:4 F-9/2. Moreover, Er3+ acts as quenching center for the blue upconversion luminescence of TM3+. The sensitization of Tm3+ to Er3+ depends on the concentration of Yb3+. The intensity of blue, green and red emissions can be changed by adjusting the concentrations of the three kinds of rare earth ions. This research may provide useful information for the development of high color and spatial resolution devices and white light simulation. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal stability, Raman spectrum and upconversion properties of Tm^(3+)/Yb^(3+) co-doped new oxyfluoride tellurite glass are investigated. The results show that Tm^(3+)/Yb^(3+) co-doped oxyfluoride tellurite glass possesses good thermal stability, lower phonon energy, and intense upconversion blue luminescence. Under 980-nm laser diode (LD) excitation, the intense blue (475 nm) emission and weak red (649 nm) emission corresponding to the 1G4 -&gt 3H6 and 1G4 -&gt 3F4 transitions of Tm^(3+) ions respectively, were simultaneously observed at room temperature. The possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tm^(3+)/Yb^(3+) co-doped oxyfluoride tellurite glass can be used as potential host material for the development of blue upconversion optical devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel oxyfluoride glasses are developed with the composition of 30SiO(2)-15Al(2)O(3)-28PbF(2)-22CdF(2)-0.1TmF(3)-xYbF(3) -(4.9-x) AlF3(x = 0, 0.5, 1.0, 1.5, 2.0) in mol fraction. Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and bear infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm3+: D-1(2) -> F-3(4), (1)G(4) -> H-3(6), (1)G(4) -> F-3(4), and H-3(4) -> H-3(6), respectively, are observed. Due to the sensitization of Yb3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.