56 resultados para Time Scale
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
By means of the matched asymptotic expansion method with one-time scale analysis we have shown that the inviscid geostrophic vortex solution represents our leading solution away from the vortex. Near the vortex there is a viscous core structure, with the length scale O(a). In the core the viscous stresses (or turbulent stresses) are important, the variations of the velocity and the equivalent height are finite and dependent of time. It also has been shown that the leading inner solutions of the core structure are the same for two different time scales of S/(ghoo)1/2 and S/a (ghoo)1/2. Within the accuracy of O(a) the velocity of a geostrophic vortex center is equal to the velocity of the local background flow, where the vortex is located, in the absence of the vortex. Some numerical examples demonstrate the contributions of these results.
Resumo:
The application of large-eddy simulation (LES) to turbulent transport processes requires accurate prediction of the Lagrangian statistics of flow fields. However, in most existing SGS models, no explicit consideration is given to Lagrangian statistics. In this paper, we focus on the effects of SGS modeling on Lagrangian statistics in LES ranging from statistics determining single-particle dispersion to those of pair dispersion and multiparticle dispersion. Lagrangian statistics in homogeneous isotropic turbulence are extracted from direct numerical simulation (DNS) and the LES with a spectral eddy-viscosity model. For the case of longtime single-particle dispersion, it is shown that, compared to DNS, LES overpredicts the time scale of the Lagrangian velocity correlation but underpredicts the Lagrangian velocity fluctuation. These two effects tend to cancel one another leading to an accurate prediction of the longtime turbulent dispersion coefficient. Unlike the single-particle dispersion, LES tends to underestimate significantly the rate of relative dispersion of particle pairs and multiple-particles, when initial separation distances are less than the minimum resolved scale due to the lack of subgrid fluctuations. The overprediction of LES on the time scale of the Lagrangian velocity correlation is further confirmed by a theoretical analysis using a turbulence closure theory.
Resumo:
Based on the authors' previous work, in this paper the systematical analyses on the motion and the inner solutions of a geostrophic vortex have been presented by means of thematched asymptotic expansion method with multiple time scales (S/gh001/2 and α S/gh001/2) and space scales. It has been shown that the leading inner solutions to the core structure in two-time scales analyses are identified with the results in normal one-time scale analyses. The time averages of the first-order solutions on short time variable τ are the same as the first-order solutions obtained in one normal time scale analyses. The geostrophic vortex induces an oscillatory motion in addition to moving with the background flow. The period, amplitude andthe deviation from the mean trajectory depend on the core structure and the initial conditions. The velocity of the motion of vortex center varies periodically and the time average of the velocity on short time variable τ is equal to the value of the local mean velocity.
“Deborah Numbers”, Coupling Multiple Space and Time Scales and Governing Damage Evolution to Failure
Resumo:
Two different spatial levels are involved concerning damage accumulation to eventual failure. nucleation and growth rates of microdamage nN* and V*. It is found that the trans-scale length ratio c*/L does not directly affect the process. Instead, two independent dimensionless numbers: the trans-scale one * * ( V*)including the * **5 * N c V including mesoscopic parameters only, play the key role in the process of damage accumulation to failure. The above implies that there are three time scales involved in the process: the macroscopic imposed time scale tim = /a and two meso-scopic time scales, nucleation and growth of damage, (* *4) N N t =1 n c and tV=c*/V*. Clearly, the dimensionless number De*=tV/tim refers to the ratio of microdamage growth time scale over the macroscopically imposed time scale. So, analogous to the definition of Deborah number as the ratio of relaxation time over external one in rheology. Let De be the imposed Deborah number while De represents the competition and coupling between the microdamage growth and the macroscopically imposed wave loading. In stress-wave induced tensile failure (spallation) De* < 1, this means that microdamage has enough time to grow during the macroscopic wave loading. Thus, the microdamage growth appears to be the predominate mechanism governing the failure. Moreover, the dimensionless number D* = tV/tN characterizes the ratio of two intrinsic mesoscopic time scales: growth over nucleation. Similarly let D be the “intrinsic Deborah number”. Both time scales are relevant to intrinsic relaxation rather than imposed one. Furthermore, the intrinsic Deborah number D* implies a certain characteristic damage. In particular, it is derived that D* is a proper indicator of macroscopic critical damage to damage localization, like D* ∼ (10–3~10–2) in spallation. More importantly, we found that this small intrinsic Deborah number D* indicates the energy partition of microdamage dissipation over bulk plastic work. This explains why spallation can not be formulated by macroscopic energy criterion and must be treated by multi-scale analysis.
Resumo:
In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single free surface standing wave including the effect of surface tension.
Resumo:
Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier-Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
Wavelet Variable Interval Time Average (WVITA) is introduced as a method incorporating burst event detection in wall turbulence. Wavelet transform is performed to unfold the longitudinal fluctuating velocity time series measured in the near wall region of a turbulent boundary layer using hot-film anemometer. This unfolding is both in time and in space simultaneously. The splitted kinetic of the longitudinal fluctuating velocity time series among different scales is obtained by integrating the square of wavelet coefficient modulus over temporal space. The time scale that related to burst events in wall turbulence passing through the fixed probe is ascertained by maximum criterion of the kinetic energy evolution across scales. Wavelet transformed localized variance of the fluctuating velocity time series at the maximum kinetic scale is put forward instead of localized short time average variance in Variable Interval Time Average (VITA) scheme. The burst event detection result shows that WVITA scheme can avoid erroneous judgement and solve the grouping problem more effectively which is caused by VITA scheme itself and can not be avoided by adjusting the threshold level or changing the short time average interval.
Resumo:
In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions is developed in weakly viscous fluids to investigate the motion of single free surface standing wave by linearizing the Navier-Stokes equation. The fluid field is divided into an outer potential flow region and an inner boundary layer region. The solutions of both two regions are obtained and a linear amplitude equation incorporating damping term and external excitation is derived. The condition to appear stable surface wave is obtained and the critical curve is determined. In addition, an analytical expression of damping coefficient is determined. Finally, the dispersion relation, which has been derived from the inviscid fluid approximation, is modified by adding linear damping. It is found that the modified results are reasonably closer to experimental results than former theory. Result shows that when forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when forcing frequency is high, the surface tension of the fluid is prominent.
Resumo:
The morphological stability of epitaxial thin elastic films on a substrate by van der Waals force is discussed. It is found that only van der Waals force with negative Hamaker constant (A < 0) tends to stabilize the film, and the lower bound for the Hamaker constant is also obtained for the stability of thin film. The critical value of the undulation wavelength is found to be a function of both film thickness and external stress. The charateristic time-scale for surface mass diffusion scales to the fourth power to the wavelength of the perturbation.
Resumo:
We formulate a lattice Boltzmann model which simulates Korteweg-de Vries equation by using a method of higher moments of lattice Boltzmann equation. Using a series of lattice Boltzmann equations in different time scales and the conservation law in time scale to, we obtain equilibrium distribution function. The numerical examples show that the method can be used to simulate soliton.
Resumo:
Barnacle cement is an underwater adhesive that is used for permanent settlement. Its main components are insoluble protein complexes that have not been fully studied. In present article, we chose two proteins of barnacle cement for study, 36-KD protein and Mrcp-100K protein. In order to investigate the characteristic of above two proteins, we introduced the method of molecular modeling. And the simulation package GROMACS was used to simulate the behavior of these proteins. In this article, before the simulations, we introduce some theories to predict the time scale for polymer relaxation. During the simulation, we mainly focus on two properties of these two proteins: structural stability and adhesive force to substrate. First, we simulate the structural stability of two proteins in water, and then the stability of 36-KD protein in seawater environment is investigated.We find that the stability varies in the different environments. Next, to study adhesive ability of two proteins, we simulate the process of peeling the two proteins from the substrate (graphite). Then, we analyze the main reasons of these results. We find that hydrogen bonds in proteins play an important role in the protein stability. In the process of the peeling, we use Lennard–Jones 12-6 potential to calculate the van der Waals interactions between proteins and substrate.
Resumo:
We studied the dependence of thermodynamic variables in a sonoluminescing ~SL! bubble on various physical factors, which include viscosity, thermal conductivity, surface tension, the equation of state of the gas inside the bubble, as well as the compressibility of the surrounding liquid. The numerical solutions show that the existence of shock waves in the SL parameter regime is very sensitive to these factors. Furthermore, we show that even without shock waves, the reflection of continuous compressional waves at the bubble center can produce the high temperature and picosecond time scale light pulse of the SL bubble, which implies that SL may not necessarily be due to shock waves.
Resumo:
Singular perturbation theory of two-time-scale expansions was developed in inviscid fluids to investigate patternforming, structure of the single surface standing wave, and its evolution with time in a circular cylindrical vessel subject to a vertical oscillation. A nonlinear slowly varying complex amplitude equation, which involves a cubic nonlinear term, an external excitation and the influence of surface tension, was derived from the potential flow equation. Surface tension was introduced by the boundary condition of the free surface in an ideal and incompressible fluid. The results show that when forced frequency is low, the effect of surface tension on the mode selection of surface waves is not important. However, when the forced frequency is high, the surface tension cannot be neglected. This manifests that the function of surface tension is to cause the free surface to return to its equilibrium configuration. In addition, the effect of surface tension seems to make the theoretical results much closer to experimental results.