4 resultados para Tiling
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In petawatt laser system, the gratings used to compose pulse compressor are very large in size which can be only acquired currently by arraying small aperture gratings to form a large one instead, an approach referred to as grating tiling. Theory and experiments have demonstrated that the coherent addition of multiple small gratings to form a larger grating is viable, the key technology of which is to control the relative position and orientation of each grating with high precision. According to the main factors that affect the performance of the grating tiling, a 5-DOF ultraprecision stage is developed for the grating tiling experiment. The mechanism is formed by serial structures. The motion of the mechanism is guided by flexure hinges and driven by piezoelectric actuators and the movement resolution of which can achieve nanometer level. To keep the stability of the mechanism, capacitive position sensors with nanometer accuracy are fixed on it to provide feedback signals with which to realize closed-loop control, thus the positioning precision of the mechanism is within several nanometers range through voltage control and digital PID algorithm. Results of experiments indicate that the performance of the mechanism can meet the requirement of precision for grating tiling.}
Object–image-grating self-tiling to achieve and maintain stable, near-ideal tiled grating conditions
Resumo:
用拼接小尺寸多层介质膜衍射介质膜衍射光栅的办法制作大口径的高破坏阈值光栅成为解决拍瓦激光系统输出能量的关键技术——光栅拼接技术。拼接的每个光栅都存在五维自由度的偏差,对激光脉冲的空间特性和时间特性产生影响。用夫琅禾费衍射的方法分析了拼接光栅的偏差对光束空间特性的影响,建立了偏差和远场强度分布之间的函数关系并用数值方法进行模拟,得出角度偏差对光束远场分布的影响可以忽略,而位移偏差:光栅间拼缝和前后位移偏差是影响光束远场分布的关键因素。
Resumo:
In this paper, we propose a new approach to construct a 2-dimensional (2-D) directional filter bank (DFB) by cascading a 2-D nonseparable checkerboard-shaped filter pair and 2-D separable cosine modulated filter bank (CMFB). Similar to diagonal subbands in 2-D separable wavelets, most of the subbands in 2-D separable CMFBs, tensor products of two 1-D CMFBs, are poor in directional selectivity due to the fact that the frequency supports of most of the subband filters are concentrated along two different directions. To improve the directional selectivity, we propose a new DFB to realize the subband decomposition. First, a checkerboard-shaped filter pair is used to decompose an input image into two images containing different directional information of the original image. Next, a 2-D separable CMFB is applied to each of the two images for directional decomposition. The new DFB is easy in design and has merits: low redundancy ratio and fine directional-frequency tiling. As its application, the BLS-GSM algorithm for image denoising is extended to use the new DFBs. Experimental results show that the proposed DFB achieves better denoising performance than the methods using other DFBs for images of abundant textures. (C) 2008 Elsevier B.V. All rights reserved.