18 resultados para Thermo-electrochemical cells

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexes [Cu(dnpb)(DPEphos)](+)(X-) (dnpb and DPEphos are 2,9-di-n-butyl-1,10-phenanthroline and bis[2-(diphenyl-phosphino)phenyl]ether, respectively, and X- is BF4-, ClO4-, or PF6-) can form high quality films with photoluminescence quantum yields of up to 71 +/- 7%. Their electroluminescent properties are studied using the device-structure indium tin oxide (ITO)/complex/metal cathiode. The devices emit green light efficiently, with an emission maximum of 523 nm, and work in the mode of light-emitting electrochemical cells. The response time of the devices greatly depends on the driving voltage, the counterions, and the thickness of the complex film. After pre-biasing at 25 V for 40 s, the devices turn on instantly, with a turn-on voltage of ca. 2.9 V. A current efficiency of 56 cd A(-1) and an external quantum efficiency of 16% are realised with Al as the cathode. Using a low-work-function metal as the cathode can significantly enhance the brightness of the device almost without affecting the turn-on voltage and current efficiency. With a Ca cathode, a brightness of 150 cd m(-2) at 6 V and 4100 cd m(-2) at 25 V is demonstrated. The electroluminescent performance of these types of complexes is among the best so far for transition metal complexes with counterions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two mononuclear neutral copper(I) complexes, Cu(L-1)PPh3 (1), Cu(L-2)(PPh3)(2) (2) ([L-1](-) = [{N((C6H3Pr2)-Pr-i-2,6)C(H)}(2)CPh](-); [L-2](-) = [{N(C6H5)C(H)}(2)CPh](-)) have been synthesized and structurally characterized by X-ray crystallography. In complex 1, the copper(I) atom is in a distorted three-coordinate trigonal planar environment, whereas in complex 2 with the less sterically hindered beta-dialdiminato ligand, the copper(I) atom is the centre of a four-coordinate distorted tetrahedron. At room temperature complexes 1 and 2 in a film of PMMA exhibit green emission at 543 and 549 nm with lifetimes of 5.28 and 5.32 ns, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis and photophysical studies of several multifunctional phosphorescent iridium(III) cyclometalated complexes consisting of the hole-transporting carbazole and fluorene-based 2-phenylpyridine moieties are reported. All of them are isolated as thermally and morphological stable amorphous solids. Extension of the pi-conjugation through incorporation of electron- pushing carbazole units to the fluorene fragment leads to bathochromic shifts in the emission profile, increases the highest oc- cupied molecular orbital levels and improves the charge balance in the resulting complexes because of the propensity of the carbazole unit to facilitate hole transport. These iridium-based triplet emitters give a strong orange phosphorescence light at room temperature with relatively short lifetimes in the solution phase. The photo- and electroluminescence properties of these phosphorescent carbazolylfluorene-functionalized metalated complexes have been studied in terms of the coordinating position of carbazole to the fluorene unit. Organic light-emitting diodes (OLEDs) using these complexes as the solution-processed emissive layers have been fabricated which show very high efficiencies even without the need for the typical hole-transporting layer.I These orange-emitting devices can produce a maximum current efficiency of similar to 30 cd A(-1) corresponding to an external quantum efficiency of similar to 10 % ph/el (photons per electron) and a power efficiency of similar to 14 Im W-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of orange-red to red phosphorescent heteroleptic Cu-I complexes (the first ligand: 2,2 '-biquinoline (bq), 4,4 '-diphenyl2,2 '-biquinoline (dpbq) or 3,3 '-methylen-4,4 '-diphenyl-2,2 '-biquinoline (mdpbq); the second ligand: triphenylphosphine or bis[2-(diphenylphosphino)phenyl]ether (DPEphos)) have been synthesized and fully characterized. With highly rigid bulky biquinoline-type ligands, complexes [Cu(mdpbq)(PPh3)(2)](BF4) and [Cu(mdpbq)(DPEphos)](BF4) emit efficiently in 20 wt % PMMA films with photoluminescence quantum yield of 0.56 and 0.43 and emission maximum of 606 nm and 617 nm, respectively. By doping these complexes in poly(vinyl carbazole) (PVK) or N-(4-(carbazol-9-yl)phenyl)-3,6-bis(carbazol-9-yl) carbazole (TCCz), phosphorescent organic light-emitting diodes (OLEDs) were fabricated with various device structures. The complex [Cu(mdpbq)(DPEphos)](BF4) exhibits the best device performance. With the device structure of ITO/PEDOT/ TCCz:[Cu(mdpbq)(DPEphos)](BF4) (15 wt %)/TPBI/LiF/Al (III), a current efficiency up to 6.4 cd A(-1) with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.61, 0.39) has been realized. To our best knowledge, this is the first report of efficient mononuclear Cu complexes with red emission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the charge transfer across the micro-liquid/liquid interface supported at the orifice of a double-barrel micropipette, namely, a theta-pipette, is reported. Simple ion transfer(TMA(+)), facilitated ion transfer (potassium ion transfer facilitated by DB18C6), and electron transfer (ferrocene and ferri/ferrocyanide system) have been investigated by cyclic voltammetry. The experimental results show that a very thin aqueous film, linking both barrels filled with the aqueous solution and the organic solution respectively, can spontaneously be formed on the outer glass surface of such a double-barrel micropipette to construct a micro-liquid/liquid interface, which provides the asymmetry of diffusion field. Such device is demonstrated experimentally which can be employed as one of the simplest electrochemical cells to investigate the charge transfer across the liquid/liquid interface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spinel, lithium intercalation compound LiMn2O4 is prepared and studied using the techniques of a.c. impedance and cyclic voltammetry. The impedance behaviour of the LiMn2O4 electrode varies as lithium ions are intercalated or de-intercalated. The reversible behaviour of lithium ions in the LiMn2O4 electrode is confirmed by the results of cyclic voltammetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thermo-optical waveguide switch matrix is designed and fabricated on silicon-on-insulator wafer. Multi-mode interferometers are used as power splitters and combiners in a Mach-Zehnder structure. Inductively coupled plasma reactive ion etching is used to fabricate the waveguides. The rise and fall times of the switch matrix are 13 mu s and 7 mu s, respectively. Switch cells have an average switching power consumption of 340 mW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on the design and performance evaluation of a miniature direct methanol fuel cell(DMFC)integrated with an electro_osmotic(EO)pump for methanol delivery.Electro-osmotic pumps require minimal parasitic power while boasting no moving parts and simple fuel cell integration.Here ,aneletro-osmotic pump is realized from a commercially available porous glass frit.We characterize a custom-fabricated DMFC with a free convection cathode and coupled to an extennal electro-osmotic pump operated at applied potentials of 4.0,7.0,and 10V.Maximum gross power density of our free convection DMFC(operated at 50°)is 55 mW/cm2 using 4.0 mol/L concentration methanol solution supplied by the EO pump.Experimental results show that electro-osmotic pumps can deliver 2.0,4.0 and 8.0mol/L methanol/water mixtures to DMFCs while utilizing ~5.0% of the fuel cell power.Furthermore ,we discuss pertinent design considerations when using electro-osmotic pumps with DMFCs and areas of further study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, organic-inorganic hybrid material, which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)), was employed to immobilize Trichosporon cutaneum strain 2.570 cells. Cells entrapped into the hybrid material were found to keep a long-term viability. The mechanism of such a long-term viability was investigated by using confocal laser scanning microscopy (CLSM). Our studies revealed that arthroconidia produced in the extracellular material might play an important role in keeping the long-term viability of the immobilized microorganism. After the arthroconidia were activated, an electrochemical biochemical oxygen demand (BOD) sensor based on cell/hybrid material-modified supporting membrane was constructed for verifying the proposed mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber-supported supra-high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of ID hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra-high density small "bare" Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber-supported supra-high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that the electrochemical oxidation of dopamine and ascorbic acid includes the proton and electron transfers at a glassy carbon electrode and their redox potentials are dependent on the pH of solution. When the concentration of the buffer is not enough to neutralize the protons produced by electrochemical oxidation of dopamine and ascorbic acid, two peaks of them can be observed in cyclic voltammograms. The height of the new peak is in proportion to the concentration of proton acceptor including HPO42-, 2,4,6-trimethylpyridine, tris (hydroxymethyl) aminomethane. Moreover, the potential of it is dependent on the type and the concentration of buffer at the same pH of bulk solution. However, this phenomenon cannot be attributed to the interaction between proton acceptor and dopamine or ascorbic acid. So, we think the phenomenon is caused by the acute change of pH at the surface of working electrode. Similar results were also observed in the rotating disk voltammograms. It can be concluded that the electrochemical behavior of some compounds is dependent on the concentration of buffer when this concentration is not enough to neutralize the protons produced in electrochemical oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we found that boron deposited on the surface of support when sodium borohydride used as reducing agent during the preparation of Pt/C catalyst. The deposition of boron markedly reduces particle size of Pt, raises electrochemical active surface (EAS) area of catalyst and electrochemical activity for hydrogen evolution or oxygen reduction reaction (ORR) compared with which prepared using other reducing agents (hydrogen and formaldehyde).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan has shown its potential as a non-viral gene carrier and an adsorption enhancer for subsequent drug delivery to cells. These results showed that chitosan acted as a membrane perturbant. However, there is currently a lack of direct experimental evidence of this membrane perturbance effect, especially for chitosans with low molecular weight (LMW). In this report, the interaction between a lipid (didodecyl dimethylammonium bromide; DDAB) bilayer and chitosan with molecular weight (MW) of 4200 Da was studied with cyclic voltammetry (CV), electrochemical impedance spectroscopy and surface plasmon resonance (SPR). A lipid bilayer was formed by-fusion of oppositely charged lipid vesicles on a mercaptopropionic acid (MPA)-modified gold surface to mimic a cell membrane. The results showed that the LMW chitosan could disrupt the lipid bilayer, and the effect seemed,to be in a concentration-dependent manner.