65 resultados para The Xiangshan U deposit

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Xiangshan U deposit, the largest hydrothermal U deposit in China, is hosted in late Jurassic felsic volcanic rocks although the U mineralization post dates the volcanics by at least 20 Ma. The mineralization coincides with intrusion of local mantle-derived mafic dykes formed during Cretaceous crustal extension in South China. Ore-forming fluids are rich in CO2, and U in the fluid is thought to have been dissolved in the form of UO2 (CO3)22− and UO2 (CO3) 34− complexes. This paper provides He and Ar isotope data of fluid inclusions in pyrites and C isotope data of calcites associated with U mineralization (pitchblende) in the Xiangshan U deposit. He isotopic compositions range between 0.1 and 2.0Ra (where Ra is the 3He/4He ratio of air=1.39×10−6) and correlates with 40Ar/36Ar; although there is potential for significant 3He production via 6Li(n,α)3H(β)3He reactions in a U deposit (due to abundant neutrons), nucleogenic production cannot account for either the 3He concentration in these fluids, nor the correlations between He and Ar isotopic compositions. It is more likely that the high 3He/4He ratios represent trapped mantle-derived gases. A mantle origin for the volatiles of Xiangshan is consistent with the δ13C values of calcites, which vary from −3.5‰ to −7.7‰, overlapping the range of mantle CO2. The He, Ar and CO2 characteristics of the ore-forming fluids responsible for the deposit are consistent with mixing between 3He- and CO2-rich mantle-derived fluids and CO2-poor meteoric fluids. These fluids were likely produced during Cretaceous extension and dyke intrusion which permitted mantle-derived CO2 to migrate upward and remobilize U from the acid volcanic source rocks, resulting in the formation of the U deposit. Subsequent decay of U within the fluid inclusions has reduced the 3He/4He ratio, and variations in U/3He result in the range in 3He/4He observed with U/3He ratios in the range 5–17×103 likely corresponding to U concentrations in the fluids b0.2 ppm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

江西相山铀矿床,位于中生代赣一杭火山岩带相山火山塌陷盆地内,是中国目前发现的最大的火山岩型铀矿床,其独特的成矿环境及成矿机理为国内外地质界所瞩目。本论文主要运用岩石学、构造学寸流体包裹体地球化学、同位素地球化学、热力学方法,从相山铀矿床的成矿构造演化、成矿流体、岩石蚀变特征、成矿物质同位素组成特征以及热力学计算等方面对地慢去气特征、过程以及其与铀矿化的关系进行了详细的研究。本研究取得了以下主要认识:1、构造活动对成矿过程起到重要作用。区域深大断裂构造、慢源岩浆活动和碱交代蚀变作用,是相山铀矿田地(量去气作用产生的地慢流体参与成矿作用的有利条件和证据。2、热力学计算表明成矿期前成矿热液pH值为9.50,呈碱性;成矿期前,UO2(CO3)22-、UO2(Coa)44-两种形式迁移的U占总U的99.96%,即矿床中成矿期前的铀主要是以这两种形式迁移的。3、氦一氢同位素研究表明,相山铀矿床的成矿流体由富CO2和3He的慢源流体与贫CO2的大气成因流体混合而成。相山铀矿床成矿热液中的CO2总体属于慢源碳,主要是由地慢或分布在铀矿床中的漫源基性脉岩提供的,而且大部分是在地壳拉张作用期间由地慢去气作用产生而上升形成了成矿热液。4、相山铀矿田成矿期前的流体包裹体中气泡较大,气体含量较高,表明包裹体捕获时压力较大;成矿期和成矿后的包裹体中气泡较小,并存在大量的纯气相包体,通过激光拉曼分析测得的物相峰值极低,表明包体中所包含组分的含量极低。而且大量成矿期纯气相包体的发现也说明其是在去气过程中捕获的从成矿热液中释放出的气体。从成矿期前到成矿期后,CO2含量减小的变化。也说明了成矿作用中发生了减压去气过程。5、在铀成矿过程中,共发生了两次去气作用。第一次地慢去气作用产生并把C仇带入到成矿热液中,第二次成矿流体去气作用正好相反把CO2从成矿热液中带出。地慢去气作用产生富CO2+H2O的地慢流体运移到地壳浅部与大气降水混和,富含矿化剂的成矿溶液由此可以有效地从赋矿围岩(中酸性火山岩和盆地基底地层)中萃取出成矿所需的U。第一次地慢去气作用产生的富CO2+H2O的地慢流体为成矿提供了最充足的矿化剂(CO2),是成矿作用得以发生的最基本最重要的条件。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure tetrahydrofuran hydrate and tetrahydrofuran hydrate deposits with different materials as the skeleton are synthesized in our laboratory. A series of experiments are carried out to study the mechanical properties. The stress-strain curve, strength of pure tetrahydrofuran hydrate and hydrate deposit are obtained. Some phenomenon is explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on Th-230-U-238 disequilibrium and major element data from mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs), this study calculates mantle melting parameters, and thereby investigates the origin of Th-230 excess. (Th-230/U-238) in global MORBs shows a positive correlation with Fe-8, P (o), Na-8, and F-melt (Fe-8 and Na-8 are FeO and Na2O contents respectively after correction for crustal fractionation relative to MgO = 8 wt%, P (o)=pressure of initial melting and F (melt)=degree of melt), while Th-230 excess in OIBs has no obvious correlation with either initial mantle melting depth or the average degree of mantle melting. Furthermore, compared with the MORBs, higher (Th-230/U-238) in OIBs actually corresponds to a lower melting degree. This suggests that the Th-230 excess in MORBs is controlled by mantle melting conditions, while the Th-230 excess in OIBs is more likely related to the deep garnet control. The vast majority of calculated initial melting pressures of MORBs with excess Th-230 are between 1.0 and 2.5 GPa, which is consistent with the conclusion from experiments in recent years that D (U)> D (Th) for Al-clinopyroxene at pressures of > 1.0 GPa. The initial melting pressure of OIBs is 2.2-3.5 GPa (around the spinel-garnet transition zone), with their low excess Ra-226 compared to MORBs also suggesting a deeper mantle source. Accordingly, excess Th-230 in MORBs and OIBs may be formed respectively in the spinel and garnet stability field. In addition, there is no obvious correlation of K2O/TiO2 with (Th-230/U-238) and initial melting pressure (P (o)) of MORBs, so it is proposed that the melting depth producing excess Th-230 does not tap the spinel-garnet transition zone. OIBs and MORBs in both (Th-230/U-238) vs. K2O/TiO2 and (Th-230/U-238) vs. P (o) plots fall in two distinct areas, indicating that the mineral phases which dominate their excess Th-230 are different. Ce/Yb-Ce curves of fast and slow ridge MORBs are similar, while, in comparison, the Ce/Yb-Ce curve for OIBs shows more influence from garnet. The mechanisms generating excess Th-230 in MORBs and OIBs are significantly different, with formation of excess Th-230 in the garnet zone only being suitable for OIBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the relations between the Machangqing rockbody which corresponds to the A-type granites and porphyry copper mineralization in terms of petrochemistry, trace element geochemistry, fluid inclusion geochemistry and isotope geochemistry. The results show that the Machangqing porphyry copper deposit was formed from the fluid predominated by mag-matic fluid. This kind of ore-forming fluid was just differentiated from the magma responsible for the A-type granites. therefore,as viewed from whereer they contain water or not,the A-type granites can,at least,be divided into two types: water-bearing and water-free.The water-bearing A-type granites can serve as the host ofporphyry copper deposits under certain geological conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

REE geochemistry data from the Fanshan alunite deposit indicated that its ore-forming materials came chiefly from the country rocks, with δCe〉0 for alunite ores. According to the differences in δEu, the alunite ores were divided into three types: weak negative Eu anomaly, weak positive Eu anomaly and remarkable positive Eu anomaly. The phenomena of Ce-enrichment in the ores indicated that the Fanshan alunite deposit was formed in an oxidizing environment. Variations in fO2 are corresponding to those in δEu: Eu anomaly varies from negative to positive with increasing fO2. And two other important factors may impact the occurrence of Eu anomalies: the contents of alkaline feldspar and the protolith structure in the mineralization period.