112 resultados para Technical solutions
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Based on the authors' previous work, in this paper the systematical analyses on the motion and the inner solutions of a geostrophic vortex have been presented by means of thematched asymptotic expansion method with multiple time scales (S/gh001/2 and α S/gh001/2) and space scales. It has been shown that the leading inner solutions to the core structure in two-time scales analyses are identified with the results in normal one-time scale analyses. The time averages of the first-order solutions on short time variable τ are the same as the first-order solutions obtained in one normal time scale analyses. The geostrophic vortex induces an oscillatory motion in addition to moving with the background flow. The period, amplitude andthe deviation from the mean trajectory depend on the core structure and the initial conditions. The velocity of the motion of vortex center varies periodically and the time average of the velocity on short time variable τ is equal to the value of the local mean velocity.
Resumo:
In this paper, we present an asymptotic method for the analysis of a class of strongly nonlinear oscillators, derive second-order approximate solutions to them expressed in terms of their amplitudes and phases, and obtain the equations governing the amplitudes and phases, by which the amplitudes of the corresponding limit cycles and their behaviour can be determined. As an example, we investigate the modified van der Pol oscillator and give the second-order approximate analytical solution of its limit cycle. The comparison with the numerical solutions shows that the two results agree well with each other.
Resumo:
There are many fault block fields in China. A fault block field consists of fault pools. The small fault pools can be viewed as the closed circle reservoirs in some case. In order to know the pressure change of the developed formation and provide the formation data for developing the fault block fields reasonably, the transient flow should be researched. In this paper, we use the automatic mesh generation technology and the finite element method to solve the transient flow problem for the well located in the closed circle reservoir, especially for the well located in an arbitrary position in the closed circle reservoir. The pressure diffusion process is visualized and the well-location factor concept is first proposed in this paper. The typical curves of pressure vs time for the well with different well-location factors are presented. By comparing numerical results with the analytical solutions of the well located in the center of the closed circle reservoir, the numerical method is verified.
Resumo:
In this paper, a new phenomenological theory with strain gradient effects is proposed to account for the size dependence of plastic deformation at micro- and submicro-length scales. The theory fits within the framework of general couple stress theory and three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom mu(i). omega(i) is called micro-rotation and is the sum of material rotation plus the particles' relative rotation. While the new theory is used to analyze the crack tip field or the indentation problems, the stretch gradient is considered through a new hardening law. The key features of the theory are that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the term of stretch gradient is represented as an internal variable to increase the tangent modulus. In fact the present new strain gradient theory is the combination of the strain gradient theory proposed by Chen and Wang (Int. J. Plast., in press) and the hardening law given by Chen and Wang (Acta Mater. 48 (2000a) 3997). In this paper we focus on the finite element method to investigate material fracture for an elastic-power law hardening solid. With remotely imposed classical K fields, the full field solutions are obtained numerically. It is found that the size of the strain gradient dominance zone is characterized by the intrinsic material length l(1). Outside the strain gradient dominance zone, the computed stress field tends to be a classical plasticity field and then K field. The singularity of stresses ahead of the crack tip is higher than that of the classical field and tends to the square root singularity, which has important consequences for crack growth in materials by decohesion at the atomic scale. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The diffusive wave equation with inhomogeneous terms representing hydraulics with uniform or concentrated lateral inflow intoa river is theoretically investigated in the current paper. All the solutions have been systematically expressed in a unified form interms of response function or so called K-function. The integration of K-function obtained by using Laplace transform becomesS-function, which is examined in detail to improve the understanding of flood routing characters. The backwater effects usuallyresulting in the discharge reductions and water surface elevations upstream due to both the downstream boundary and lateral infloware analyzed. With a pulse discharge in upstream boundary inflow, downstream boundary outflow and lateral inflow respectively,hydrographs of a channel are routed by using the S-functions. Moreover, the comparisons of hydrographs in infinite, semi-infiniteand finite channels are pursued to exhibit the different backwater effects due to a concentrated lateral inflow for various channeltypes.
Resumo:
It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP. The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theoretical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP.
Resumo:
The T-stress is considered as an important parameter in linear elastic fracture mechanics. In this paper, several closed form solutions of T-stress in plane elasticity crack problems in an infinite plate are investigated using the complex potential theory. In the line crack case, if the applied loading is the remote stress or the concentrated forces, the T-stress can be derived from the basic field. Here, the basic field is defined as the field caused by the applied loading in the infinite plate without the crack. For the circular are crack, the T-stress can be abstracted from a known solution. For the cusp crack problems, the T-stress can be separated from the obtained stress solution for which the conformal mapping technique is used.
Resumo:
By using AKNS [Phys. Rev. Lett. 31 (1973) 125] system and introducing the wave function, a family of interesting exact solutions of the sine-Gordon equation are constructed. These solutions seem to be some soliton, kink, and anti-kink ones respectively for the different choice of the spectrum, whereas due to the interaction between two traveling-waves they have some properties different from usual soliton, kink, and anti-kink solutions.
Resumo:
For understanding the correctness of simulations the behaviour of numerical solutions is analysed, Tn order to improve the accuracy of solutions three methods are presented. The method with GVC (group velocity control) is used to simulate coherent structures in compressible mixing layers. The effect of initial conditions for the mixing layer with convective Mach number 0.8 on coherent structures is discussed. For the given initial conditions two types of coherent structures in the mixing layer are obtained.
Resumo:
Cracking of ceramics with tetragonal perovskite grain structure is known to appear at different sites and scale level. The multiscale character of damage depends on the combined effects of electromechanical coupling, prevailing physical parameters and boundary conditions. These detail features are exhibited by application of the energy density criterion with judicious use of the mode I asymptotic and full field solution in the range of r/a = 10(-4) to 10(-2) where r and a are, respectively, the distance to the crack tip and half crack length. Very close to the stationary crack tip, bifurcation is predicted resembling the dislocation emission behavior invoked in the molecular dynamics model. At the macroscopic scale, crack growth is predicted to occur straight ahead with two yield zones to the sides. A multiscale feature of crack tip damage is provided for the first time. Numerical values of the relative distances and bifurcation angles are reported for the PZT-4 ceramic subjected to different electric field to applied stress ratio and boundary conditions that consist of the specification of electric field/mechanical stress, electric displacement/mechanical strain, and mixed conditions. To be emphasized is that the multiscale character of damage in piezoceramics does not appear in general. It occurs only for specific combinations of the external and internal field parameters, elastic/piezoelectric/dielectric constants and specified boundary conditions. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220
Resumo:
Burgers suggested that the main properties of free-turbulence in the boundless area without basic flow might be understood with the aid of the following equation, which was much simpler than those of fluid dynamics,
Resumo:
For most practically important plane elasticity problems of orthotropic materials, stresses depend on elastic constants through two nondimensional combinations. A spatial rescaling has been found to reduce the orthotropic problems to equivalent problems in materials with cubic symmetry. The latter, under favorable conditions, may be approximated by isotropic materials. Consequently, solutions for orthotropic materials can be constructed approximately from isotropic material solutions or rigorously from cubic ones. The concept is developed to gain insight into the interplay between anisotropy and finite geometry. The inherent simplicity of the solutions allows a variety of technical problems to be addressed efficiently. Included are stress concentration related cracking, effective contraction of orthotropic material specimens, crack deflection onto easy fracture planes, and surface flaw induced delamination.
Resumo:
By means of the matched asymptotic expansion method with one-time scale analysis we have shown that the inviscid geostrophic vortex solution represents our leading solution away from the vortex. Near the vortex there is a viscous core structure, with the length scale O(a). In the core the viscous stresses (or turbulent stresses) are important, the variations of the velocity and the equivalent height are finite and dependent of time. It also has been shown that the leading inner solutions of the core structure are the same for two different time scales of S/(ghoo)1/2 and S/a (ghoo)1/2. Within the accuracy of O(a) the velocity of a geostrophic vortex center is equal to the velocity of the local background flow, where the vortex is located, in the absence of the vortex. Some numerical examples demonstrate the contributions of these results.
Resumo:
Ten kinds of the simplified Navier-Stokes equations (SNSE) are reviewed and also used to calculate the Jeffery-Hamel flow as well as to analyze briefly the seven kinds of flows to which the exact solutions of the complete Navier-Stokes equations (CNSE) have been found. Analysis shows that the actual differences among the solutions of the different SNSE can go beyond the range of the order of magnitude of Re-1/2 and result even in different flow patterns, therefore, how to choose the viscous terms included in the SNSE is worthy of notice where Re=S∞u∞ L/μ∞ is the Reynolds numbers. For the aforesaid eight kinds of flows, the solutions to the inner-outer-layer-matched SNSE and to the thin-layer-2-order SNSE agree completely with the exact solutions to CNSE. But the solutions to all the other SNSE are not completely consistent with the exact solutions to CNSE and not a few of them are actually the solutions of the classical boundary layer theory. The innerouter-layer-matched SNSE contains the shear stress causing angular displacement of the inormal axis with respect to the streamwise axis and the normal stress causing expansion-contraction in the direction of the normal axis and the viscous terms being of the order of magnitude of the normal stress; and it can also reasonably treat the inertial terms as well as the relation between the viscous and inertial terms. Therefore, it seems promising in respects of both mechanics and mathematics.