14 resultados para Taylor, Neil
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The 3-dimensiqnal incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation (LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinu
Resumo:
给出了高Bond数下黏性液滴表面Rayleigh-Taylor线性不稳定性的分析解,这种不稳定性对于超音速气流作用下液滴破碎的早期阶段起着至关重要的作用.基于稳定性分析的结果,导出了用于估算稳定液滴的最大直径及液滴无量纲初始破碎时间的计算式,这些计算式与相关文献给出的实验和分析结果比较显示了良好的一致.
Resumo:
本文以拟压缩性法和物理时间/伪时间双重时间推进,数值求解非定常不可压缩流N=S方程。拟压缩性项是对伪时间的导数项,在每一物理时间层,进行对伪时间的推进使拟压缩性项趋于零,从而使连续方程得到满足。用Lower-Upper Symmetric Gaus-—Seidel(LU-SGS)恪式求解离散所得的方程。针对前人LU-SGS格式未计及隐式物理粘性,在计算中低Re数流动时容易发散或造成收敛率低的问题,利用简化的隐式粘性项改善了格式的稳定性,并用三阶迎风紧致差分逼近无粘通量,提高了伪时间推进的收敛率。模拟了间隙比σ=0.18的两同心旋转球之间轴对称Couette-Taylor流的0-、1-和2-涡三种流态和它们之间的转变过程。
Resumo:
<正> 1.激波管中的流动 我们现在考虑如图1所示的电磁激波管。放电之后,有一个强激波向右传播,后面是一个电流层,它分开了等离子体与磁场。1959年,Wright和Black曾详细地研究了在放电初期电磁激波管中的流动。在假定电流i与时间t成正比之后,他们求出了一个相似解。这时电流层以等加速度a向右方运动,可以预料,这将会发生Rayleigh-Taylor不稳定性,由于加速度a大,不稳定性增长率ω也很大。 我们令电流面以等加速度a向右运动(见图2)。电流面的坐标x_0(t)与速度v_0(t)分
Resumo:
The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220
Resumo:
对不可压缩流体三维Rayleigh-Taylor不稳定性问题建立被动标量输运模型,用大涡模拟方法计算了正弦初始扰动和随机初始扰动下不稳定性发展各个阶段的瞬时速度度场和标量场,以及混合过程中计算尺度和亚格子尺度上的平均湍流脉动能、平均剪切应力和被动标量通量;分析了 界面形状、被动标量浓度分布的演化规律及气泡、尖钉速度和混合层宽度随时间的变化规律,计算结果与其他数值模拟和实验结果相吻合,验证了大涡模拟方法应用于该问题的可行性。
Resumo:
一位科学家的工作提供了一门完整课程的素材,涉及从流体动力学稳定性、湍流到流体电动力学、微生物的运动.
Resumo:
界面不稳定是自然界和工业中流动的普遍现象。本文以Rayleigh-Taylor不稳定性为范例,说明基于物理思想的CFD方法在流动问题研究中的应用。为了确定自由面,以往的Lagrange坐标法、阵面跟踪法在界面发生大变形时都会失效。同时,因流动不稳定从层流发展到湍流要经历若干阶段。因此,如何追踪演化过程的界面变形和如何确定湍流模型是R-T不稳定性研究中的主要困难。本文将溶质浓度差异视为导致介质轻重不同的原因,在不稳定发展过程中发生对流和混合。我们提出采用被动标量的大涡模拟方法来模拟R-T不稳定。鉴于该物理模型考虑了流体粘性和物质扩散的影响,可以自动确定阵面,完整描述不稳定从线性小扰动阶段、经过非线性变形阶段、剪切不稳定阶段到湍流混合阶段,真实重现了现象的物理过程,所以更为优越。通过比较尖钉和气泡阵面前进速度和计算亚格子分量的份
Resumo:
A computational simulation is conducted to investigate the influence of Rayleigh-Taylor instability on liquid propellant reorientation flow dynamics for the tank of CZ-3A launch vehicle series fuel tanks in a low-gravity environment. The volume-of-fluid (VOF) method is used to simulate the free surface flow of gas-liquid. The process of the liquid propellant reorientation started from initially flat and curved interfaces are numerically studied. These two different initial conditions of the gas-liquid interface result in two modes of liquid flow. It is found that the Rayleigh-Taylor instability can be reduced evidently at the initial gas-liquid interface with a high curve during the process of liquid reorientation in a low-gravity environment.
Resumo:
A simple three-axis model has been developed, which has been successfully applied to the analysis of the light transmittance in spatial incident angle and the simulation of modified formula of Malus' law for Glan-Taylor prisms. Our results indicate that the fluctuations on the cosine squared curve are due to specific misalignments between the axis of the optical system, the optical axis of the prism and the mechanical axis (rotation axis) of prism, which results in the fact that different initial relative location of the to-be-measured-prism in the testing system corresponds to different shape of Malus' law curve. Methods to get absolutely smooth curve are proposed. This analysis is available for other kinds of Glan-type prisms. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The space-time cross-correlation function C-T(r, tau) of local temperature fluctuations in turbulent Rayleigh-Benard convection is obtained from simultaneous two-point time series measurements. The obtained C-T(r, tau) is found to have the scaling form C-T(r(E), 0) with r(E)=[(r-U tau)(2)+ V-2 tau(2)](1/2), where U and V are two characteristic velocities associated with the mean and rms velocities of the flow. The experiment verifies the theory and demonstrates its applications to a class of turbulent flows in which the requirement of Taylor's frozen flow hypothesis is not met.