29 resultados para Targets Coded
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Abstract This paper presents a hybrid heuristic{triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in di®erential evolution (DE), TE targets each individual in current population and attempts to replace it by a new better individual. However, the way of generating new individuals is di®erent. TE generates new individuals in a Nelder- Mead way, while the simplices used in TE is 1 or 2 dimensional. The proposed algorithm is very easy to use and e±cient for global optimization problems with continuous variables. Moreover, it requires only one (explicit) control parameter. Numerical results show that the new algorithm is comparable with DE for low dimensional problems but it outperforms DE for high dimensional problems.
Resumo:
An experimental study on the angular distribution and conversion of multi-keV X-ray sources produced from 2 ns-duration 527nm laser irradiated thick-foil targets on Shenguang II laser facility (SG-II) is reported. The angular distributions measured in front of the targets can be fitted with the function of f(theta) = alpha+ (1- alpha)cos(beta) theta (theta is the viewing angle relative to the target normal), where alpha = 0.41 +/- 0.014, beta = 0.77 +/- 0.04 for Ti K-shell X-ray Sources (similar to 4.75 keV for Ti K-shell), and alpha = 0.085 +/- 0.06, beta = 0.59 +/- 0.07 for Ag/Pd/Mo L-shell X-ray Sources (2-2.8 keV for Mo L-shell, 2.8-3.5 keV for Pd L-shell, and 3-3.8 keV for Ag L-shell). The isotropy of the angular-distribution of L-shell emission is worse than that of the K-shell emission at larger viewing angle (>70 degrees), due to its larger optical depth (stronger self-absorption) in the cold plasma side lobe Surrounding the central emission region, and in the central hot plasma region (emission region). There is no observable difference in the angular distributions of the L-shell X-ray emission among Ag, Pd, and Mo. The conversion efficiency of Ag/Pd/Mo L-shell X-ray sources is higher than that of the Ti K-shell X-ray sources, but the gain relative to the K-shell emission is not as high as that by using short pulse lasers. The conversion efficiency of the L-shell X-ray sources decrease, with increasing atomic numbers (or X-ray photon energy), similar to the behavior of the K-shell X-ray Source.
Resumo:
The interaction of a circularly polarized laser pulse with a mixed solid target containing two species of ions is studied by particle in cell simulations and analytical model. After the interaction tends to be stable, it is demonstrated that the acceleration is more efficient for the heavier ions than that in plasmas containing a single kind of heavy ion and the acceleration efficiency is higher when its proportion is lower. To obtain monoenergetic heavy-ion beams, a sandwich target with a thin mixed ion layer between two light ion layers and a microstructured target are proposed. The influences of parameters of the laser pulse and target on ion acceleration are discussed in detail. It is found that, when the target is thick enough, a cold target is more appropriate for heavy-ion acceleration than a warm target, and the velocity of the reflected heavy ions is proportional to the laser amplitude.
Resumo:
An analytical fluid model for vacuum heating during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking since the front part of the returning electrons always move slower than the trailing part. This can lead to heating of the plasma at the expense of the wave energy. An estimate for the efficiency of laser energy absorption by the vacuum heating is given. It is also found that for the incident laser intensity parameter, a(L)> 0.5, the absorption rate peaks at an incident angle 45 degrees-52 degrees and it reaches a maximum of 30% at a(L)approximate to 1.5.
Resumo:
An analytical fluid model is proposed for the generation of strong quasistatic magnetic fields during normal incidence of a short ultraintense Gaussian laser pulse with a finite spot size on an overdense plasma. The steepening of the electron density profile in the originally homogeneous overdense plasma and the formation of electron cavitation as the electrons are pushed inward by the laser are included self-consistently. It is shown that the appearance of the cavitation plays an important role in the generation of quasistatic magnetic fields: the strong plasma inhomogeneities caused by the formation of the electron cavitation lead to the generation of a strong axial quasistatic magnetic field B-z. In the overdense regime, the generated quasistatic magnetic field increases with increasing laser intensity, while it decreases with increasing plasma density. It is also found that, in a moderately overdense plasma, highly intense laser pulses can generate magnetic fields similar to 100 MG and greater due to the transverse linear mode conversion process.
Resumo:
In this paper, we propose a novel three-dimensional imaging method by which the object is captured by a coded cameras array (CCA) and computationally reconstructed as a series of longitudinal layered surface images of the object. The distribution of cameras in array, named code pattern, is crucial for reconstructed images fidelity when the correlation decoding is used. We use DIRECT global optimization algorithm to design the code patterns that possess proper imaging property. We have conducted primary experiments to verify and test the performance of the proposed method with a simple discontinuous object and a small-scale CCA including nine cameras. After certain procedures such as capturing, photograph integrating, computational reconstructing and filtering, etc., we obtain reconstructed longitudinal layered surface images of the object with higher signal-to-noise ratio. The results of experiments show that the proposed method is feasible. It is a promising method to be used in fields such as remote sensing, machine vision, etc. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Snake venoms are mixtures of enzymes and peptides which exert toxicological effects by targeting their substrates or receptors upon envenomation. Snake venom proteins widely affect vascular system including circulating blood cells, coagulation factors, an
Resumo:
Modification of proteins by ubiquitination plays important roles in various cellular processes. During this process, the target specificity is determined by ubiquitin ligases. Here we identify RNF220 (RING finger protein 220) as a novel ubiquitin ligase for Sin3B. As a conserved RING protein, RNF220 can bind E2 and mediate auto-ubiquitination of itself. Through a yeast two-hybrid screen, we isolated Sin3B as one of its targets, which is a scaffold protein of the Sin3/HDAC (histone deacetylase) corepressor complex. RNF220 specifically interacts with Sin3B both in vitro and in vivo. Sin3B can be regulated by the ubiquitin-proteasome system. Co-expression of RNF220 promotes the ubiquitination and proteasomal degradation of Sin3B. Taken together, these results reveal a new mechanism for regulating the Sin3/HDAC complex. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Using a combined computational program. we identified 50 potential microRNAs (miRNAs) in Giardia lamblia. one of the most primitive unicellular eukaryotes. These miRNAs are unique to G. lamblia and no homologues have been found in other organisms; miRNAs.