19 resultados para Tagged Mri

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by “GAMESS”, and the rest atoms are treated as MM part calculated by “TINKER”. The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with theQMpart with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(1 0 0) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the imidazole rings are attached to the substrate more tightly than other bases in this peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations are performed to study the interaction of His-tagged peptide with three different metal surfaces in explicit water. The equilibrium properties are analyzed by using pair correlation functions (PCF) to give an insight into the behavior of the peptide adsorption to metal surfaces in water solvent. The intermolecular interactions between peptide residues and the metal surfaces are evaluated. By pulling the peptide away from the peptide in the presence of solvent water, peeling forces are obtained and reveal the binding strength of peptide adsorption on nickel, copper and gold. From the analysis of the dynamics properties of the peptide interaction with the metal surfaces, it is shown that the affinity of peptide to Ni surface is the strongest, while on Cu and An the affinity is a little weaker. In MD simulations including metals, the His-tagged region interacts with the substrate to an extent greater than the other regions. The work presented here reveals various interactions between His-tagged peptide and Ni/Cu/Au surfaces. The interesting affinities and dynamical properties of the peptide are also derived. The results give predictions for the structure of His-tagged peptide adsorbing on three different metal surfaces and show the different affinities between them, which assist the understanding of how peptides behave on metal surfaces and of how designers select amino sequences in molecule devices design. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by "GAMESS", and the rest atoms are treated as MM part calculated by "TINKER". The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with the QM part with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(100) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the in-tidazole rings are attached to the substrate more tightly than other bases in this peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recoiled proton tagged knockout reaction experiments were carried-out for He-8 at 82.5 MeV/u in RIKEN and for He-6 at 65 MeV/u in Lanzhou. The very preliminary results for the distinguish of the reaction mechanism are presented and compared to the kinematics calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabinogalactan derivatives conjugated with gad olinium-diethylenetriaminepentaacetic acid (Gd-DTPA) by ethylenediamine (Gd-DTPA-CMAG-A(2)) or hexylamine (Gd-DTPA-CMAG-A(6)) have been synthesized and characterized by means of Fourier transform infrared spectra (FTIR), C-13 nuclear magnetic resonance (C-13 NMR), size exclusion chromatography (SEC), and inductively coupled plasma atomic emission spectrometry (ICP-AES).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

用离子交换法制备了Mn2+交换的NaY分子筛MnNaY,用红外光谱(IR)和X射线粉末衍射(XRD)等方法进行了表征.研究了Mn2+含量为3.2%的样品在酸性水溶液中的稳定性和离子交换选择性.弛豫时间测量和体内磁共振成像实验表明其弛豫效率变化范围为4.9~9.7mmol·L·s-1,高于目前临床所用造影剂Gd-DTPA,对胃部MRI信号具有良好的增强效果.它是比较好的潜在口服胃肠道造影剂.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two gadolinium (Gd) polyoxometalates, K-15[Gd(BW11O39)(2)] [Gd(BW11)(2)] and K-17[Gd(CuW11O39)(2)] [Gd(CuW11)(2)] have been evaluated by in vivo and in vitro experiments as the candidates of potential tissue-specific magnetic resonance imaging (MRI) contrast agents. T-1 relaxivities of 17.12 mM(-1) . s(-1) for Gd(BW11)(2) and 19.95 mM(-1) . s(-1) for Gd(CuW11)(2) (400MHz, 25 degrees C) were much higher than that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in bovine serum albumin and human serum transferrin solutions were also reported. After administration of Gd(BW11)(2) and Gd(CuW11)(2) to Wistar rats, MRI showed longer and remarkable enhancement in rat liver and favorable renal excretion capability. The signal intensity increased by 37.63 +/- 3.45% for the liver during the whole imaging period (100 min) and by 61.47 +/- 10.03% for kidney within 5-40 min after injection at 40 +/- 1-mu mol . kg(-1) dose for Gd(CuW11)(2), and Gd(BW11)(2) induced 50.44 +/- 3.51% enhancement in the liver in 5-50-min range and 61.47 +/- 10.03% enhancement for kidney within 5-40 min after injection at 39 +/- 4 mu mol . kg(-1) dose. In vitro and in vivo study showed that Gd(BW11)(2) and Gd(CuW11)(2) are favorable candidates as tissue-specific contrast agents for MRI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two gadolinium-sandwiched complexes with tungstosilicates, K-13[Gd(SiW11O39)(2)] (Gd(SiW11)(2)) and K11H6[Gd2O3(SiW9O34)(2)] (Gd-3(SiW9)(2)), have been investigated by in vitro and in vivo experiments as potential contrast agents for magnetic resonance imaging (MRI). T-1-relaxivity of Gd(SiW11)(2)was 6.59 mM(-1) . s(-1) in aqueous solution and 6.85 mM(-1) . s(-1) in 0.725 mmol . L-1 bovine serum albumin solution at 25degreesC and 9.39 T, respectively. The corresponding T-1-relaxivity of Gd-3(SiW9)(2) was 12.6 and 19.3 mM(-1) . s(-1) per Gd, respectively. MRI for Sprague-Dawley rats showed longer and more remarkable enhancement in rat liver after i.v. injection of these two complexes: 39.4 +/- 3.9% and 57.4 +/- 11.6% within the first 30 min after injection, 31.2 +/- 2.6% and 39.9 +/- 7.6% in the next 60 min for Gd(SiW11)(2) and Gd-3(SiW9)(2) at doses of 0.081 and 0.084 mmol Gd/kg, respectively. Our preliminary in vitro and in vivo study indicates that Gd(SiW11)(2) and Gd-3(SiW9)(2) are favorable candidates for hepatic contrast agents for MRI. However, the two complexes exhibit higher acute toxicity and need to be modified and studied further before clinical use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gadolinium heteropoly complex K-17[Gd(P2W17O61)(2)] has been evaluated by in vitro and in vivo experiments as a potential contrast agent for magnetic resonance imaging (MRI). The thermal analysis and conductivity study indicate that this complex has good thermal stability and wide pH stability range. The T-1 relaxivity is 7.59 mM(-1) s(-1) in aqueous solution and 7.97 mM(-1) s(-1) in 0.725 mmol l(-1) bovine serum albumin (BSA) solution at 25degreesC and 9.39 T, respectively. MR imaging of three male Sprague-Dawley rats showed remarkable enhancement in rat liver after intravenous injection, which persisted longer than with Gd-DTPA. The signal intensity increased by 57.1 +/- 16.9% during the whole imaging period at 0.082 mmol kg(-1) dose. Our preliminary in vitro and in vivo studies indicate that K-17[Gd(P2W17O61)(2)] is a potential liver-specific MRI contrast agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macromolecular conjugates of two kinds of natural polysaccharides, that from Panax quinquefolium linn (PQPS) and Ganoderma applanatum pat (GAPS), with gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) have been synthesized and characterized by means of FTIR, elementary analysis and ICP-AES. Their stability was investigated by competition study with Ca2+, EDTA (ethylenediaminetetraacetic acid) and DTPA. Polysaccharide-bound complexes exhibit T-1 relaxivities of 1.5-1.7 times that of Gd-DTPA in D2O at 25degreesC and 9.4T. MR imaging of Sprague-Dawley (SD) rats showed remarkable enhancement in rat liver and kidney after i.v. injection of these two complexes: liver parenchyma 60.9+/-5.6%, 57.8+/-7.4% at 65-85 min; kidney 144.9+/-14.5%, 199.9+/-25.4% at 10-30 min for PQPS-GdDTPA, GAPS-Gd-DTPA at gadolinium dose of 0.083 and 0.082 mmol/kg, respectively. Our preliminary in vivo and in vitro study indicates that the two kinds of polysaccharide-bound complexes are potential tissue-specific contrast agents for MRI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four neutral gadolinium complexes of diethylenetriaminepentaacetic acid (DTPA)-bisamide derivatives have been synthesized and characterized. Their potential application as tissue-specific and low-osmolarity MRI contrast agents has been evaluated by in vitro and in vivo experiments. Their measured relaxivities in D2O, bovine serum albumin and human serum transferrin solutions showed favorable relaxation ability. In vivo studies have proven that Gd(DTPA-BDMA), Gd(DTPA-BIN), and Gd(cyclic-DTPA-1,2-pn) could be promising liver-specific MRI contrast agents and Gd(DTPA-BDMA), and Gd(cyclic-DTPA-1,2-pn) have favorable renal excretion capability. Among them, Gd(cyclic-DTPA-1,2-pn) is a more powerful hepatic contrast agent and Gd(DTPA-BIN) provides the stable imaging contrast for several hours. They also show a lower toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two gadolinium polyoxometalates, Gd2P2W18O62 and K-15[(GdO)(3)(PW9O34)(2)], have been evaluated by in vivo as well as in vitro experiments as the candidates of tissue-specific magnetic resonance imaging (MRI) contrast agents. T-1-relaxivities of 28.4 mM(-1)-s(-1) for Gd2P2W18O62 and 11.2 mM(-1)-s(-1) for K-15[(GdO)(3)(PW9O34)(2)] (400 MHz, 25 degreesC) were higher than that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in bovine serum albumin and human serum transferrin were also reported. The favorable liver-specific contrast enhancement and renal excretion capability in in vivo MRI with Sprague-Dawley rats after i.v. administration of K-15[(GdO)(3)(PW9O34)(2)] was demonstrated. In vivo and in vitro assay showed that K-15[(GdO)(3)(PW9O34)(2)] is a promising liver-specific MRI contrast agent. However, Gd2P2W18O62 did not show the favorable quality in vivo as expected from its high relaxivity in vitro, which was attributed to low bioavailability, indicating that it is of limited value as tissue-specific MRI contrast agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two gadolinium polyoxometalates, K9GdW10O36 and K-11 [Gd(PW11O39)(2)], have been evaluated both in vivo and in vitro as candidates for tissue-specific MRI contrast agents. T-1-relaxivities of 6.89 mM(-1) . s(-1) for K9GdW10O36 and 5.27 mM(-1) . s(-1) for K-11[Gd(PW11O39)(2)] are slightly higher than that of the commercial MRI contrast agent (Gd-DTPA). Both compounds bind with bovine serum albumin and human serum transferrin and favorable liver-specific contrast enhancement in in vivo MRI with Sprague-Dawley rats after i.v. administration has been demonstrated. Imaging studies demonstrate that the two agents have a long residence time, showing MR signal enhancement in the liver for more than 40 min, longer than commercially available contrast agents. In vivo and in vitro assays showed that GdW10 and Gd(PW11)(2) are promising liver-specific MRI contrast agents and GdW10 may be used in the diagnosis of the pathological state. However, with the higher acute toxicity, the two gadolinium polyoxometalates need to be modified and studied further before clinical use.