110 resultados para TRANSVERSELY ISOTROPIC CONSTITUENTS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The torsional impact response of a penny-shaped crack in an unbounded transversely isotropic solid is considered. The shear moduli are assumed to be functionally graded such that the mathematics is tractable. Laplace transform and Hankel transform are used to reduce the problem to solving a Fredholm integral equation. The crack tip stress fields are obtained. Investigated are the influence of material nonhomogeneity and orthotropy on the dynamic stress intensity factor. The peak value of the dynamic stress intensity factor can be suppressed by increasing the shear moduli's gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface.
Resumo:
A generalized plane strain JKR model is established for non-slipping adhesive contact between an elastic transversely isotropic cylinder and a dissimilar elastic transversely isotropic half plane, in which a pulling force acts on the cylinder with the pulling direction at an angle inclined to the contact interface. Full-coupled solutions are obtained through the Griffith energy balance between elastic and surface energies. The analysis shows that, for a special case, i.e., the direction of pulling normal to the contact interface, the full-coupled solution can be approximated by a non-oscillatory one, in which the critical pull-off force, pull-off contact half-width and adhesion strength can be expressed explicitly. For the other cases, i.e., the direction of pulling inclined to the contact interface, tangential tractions have significant effects on the pull-off process, it should be described by an exact full-coupled solution. The elastic anisotropy leads to an orientation-dependent pull-off force and adhesion strength. This study could not only supply an exact solution to the generalized JKR model of transversely isotropic materials, but also suggest a reversible adhesion sensor designed by transversely isotropic materials, such as PZT or fiber-reinforced materials with parallel fibers. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve Our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Recently, Chen and Gao [Chen, S., Gao, H., 2007. Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. solids 55, 1001-1015] studied the problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic solid subjected to an inclined pulling force. An implicit assumption made in their study was that the contact region remains symmetric with respect to the center of the cylinder. This assumption is, however, not self-consistent because the resulting energy release rates at two contact edges, which are supposed to be identical, actually differ from each other. Here we revisit the original problem of Chen and Gao and derive the correct solution by removing this problematic assumption. The corrected solution provides a proper insight into the concept of orientation-dependent adhesion strength in anisotropic elastic solids. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An infinite elastic solid containing a doubly periodic parallelogrammic array of cylindrical inclusions under longitudinal shear is studied. A rigorous and effective analytical method for exact solution is developed by using Eshelby's equivalent inclusion concept integrated with the new results from the doubly quasi-periodic Riemann boundary value problems. Numerical results show the dependence of the stress concentrations in such heterogeneous materials on the periodic microstructure parameters. The overall longitudinal shear modulus of composites with periodic distributed fibers is also studied. Several problems of practical importance, such as those of doubly periodic holes or rigid inclusions, singly periodic inclusions and single inclusion, are solved or resolved as special cases. The present method can provide benchmark results for other numerical and approximate methods. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Effective elastic properties of piezoelectric composites containing an infinitely long, radially polarized cylinder embedded in an isotropic non-piezoelectric matrix are theoretically investigated under an external strain field. Analytical solutions of elastic displacement and electric potentials are exactly derived, and the effective elastic responses are formulated in the dilute limit. Meanwhile, a vanishing piezoelectric response mechanism is revealed in the piezoelectric composite containing radially polarized cylinders. Furthermore, it is shown that the effective elastic properties can be enhanced (or reduced) due to the increase of the piezoelectric (or dielectric) constants of the cylinders. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Many physical experiments have shown that the domain switching in a ferroelectric material is a complicated evolution process of the domain wall with the variation of stress and electric field. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of ferroelectric ceramic and used to study the nonlinear constitutive behavior of ferroelectric body in this paper. The principle of stationary total energy is put forward in which the basic unknown quantities are the displacement u (i) , electric displacement D (i) and volume fraction rho (I) of the domain switching for the variant I. Mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion. On the basis of the domain switching criterion, a set of linear algebraic equations for the volume fraction rho (I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. Then a single domain mechanical model is proposed in this paper. The poled ferroelectric specimen is considered as a transversely isotropic single domain. By using the partial experimental results, the hardening relation between the driving force of domain switching and the volume fraction of domain switching can be calibrated. Then the electromechanical response can be calculated on the basis of the calibrated hardening relation. The results involve the electric butterfly shaped curves of axial strain versus axial electric field, the hysteresis loops of electric displacement versus electric filed and the evolution process of the domain switching in the ferroelectric specimens under uniaxial coupled stress and electric field loading. The present theoretic prediction agrees reasonably with the experimental results given by Lynch.
Resumo:
At present, in order to image complex structures more accurately, the seismic migration methods has been developed from isotropic media to the anisotropic media. This dissertation develops a prestack time migration algorithm and application aspects for complex structures systematically. In transversely isotropic media with a vertical symmetry axis (VTI media), the dissertation starts from the theory that the prestack time migration is an approximation of the prestack depth migration, based on the one way wave equation and VTI time migration dispersion relation, by combining the stationary-phase theory gives a wave equation based VTI prestack time migration algorithm. Based on this algorithm, we can analytically obtain the travel time and amplitude expression in VTI media, as while conclude how the anisotropic parameter influence the time migration, and by analyzing the normal moveout of the far offset seismic data and lateral inhomogeneity of velocity, we can update the velocity model and estimate the anisotropic parameter model through the time migration. When anisotropic parameter is zero, this algorithm degenerates to the isotropic time migration algorithm naturally, so we can propose an isotopic processing procedure for imaging. This procedure may keep the main character of time migration such as high computational efficiency and velocity estimation through the migration, and, additionally, partially compensate the geometric divergence by adopting the deconvolution imaging condition of wave equation migration. Application of this algorithm to the complicated synthetic dataset and field data demonstrates the effectiveness of the approach. In the dissertation we also present an approach for estimating the velocity model and anisotropic parameter model. After analyzing the velocity and anisotropic parameter impaction on the time migration, and based on the normal moveout of the far offset seismic data and lateral inhomogeneity of velocity, through migration we can update the velocity model and estimate the anisotropic parameter model by combining the advantages of velocity analysis in isotropic media and anisotropic parameter estimation in VTI media. Testing on the synthetic and field data, demonstrates the method is effective and very steady. Massive synthetic dataset、2D sea dataset and 3D field datasets are used for VTI prestack time migration and compared to the stacked section after NMO and prestack isotropic time migration stacked section to demonstrate that VTI prestack time migration method in this paper can obtain better focusing and less positioning errors of complicated dip reflectors. When subsurface is more complex, primaries and multiples could not be separated in the Radon domain because they can no longer be described with simple functions (parabolic). We propose an attenuating multiple method in the image domain to resolve this problem. For a given velocity model,since time migration takes the complex structures wavefield propagation in to account, primaries and multiples have different offset-domain moveout discrepancies, then can be separated using techniques similar to the prior migration with Radon transform. Since every individual offset-domain common-reflection point gather incorporates complex 3D propagation effects, our method has the advantage of working with 3D data and complicated geology. Testing on synthetic and real data, we demonstrate the power of the method in discriminating between primaries and multiples after prestack time migration, and multiples can be attenuated in the image space considerably.
Resumo:
It has been a difficult problem faced by seismologists for long time that how exactly to reconstruct the earth's geometric structure and distribution of physical attributes according to seismic wave's kinematical and dynamic characteristics, obtained in seismological observation. The jointing imaging of seismic reflector and anisotropy attributes in the earth interior is becoming the research hot spot. The limitation of shoot and observation system makes that the obtained seismic data are too scarce to exactly reconstruct the geological objects. It is popular that utilizing only seismic reflection traveltimes or polarizations information make inversion of the earth's velocity distribution by fixing seismic reflector configuration (vice versa), these will lead to the serious non-uniqueness reconstruction due to short of effective data, the non-uniqueness problem of reconstructing anisotropy attributes will be more serious than in isotropy media. Obviously it is not enough to restrict the media structure only by information of seismic reflection traveltimes or polarizations, which even sometimes will lead to distorted images and misinterpretation of subsurface structure. So we try to rebuild seismic reflection structure (geometry) and media anisotropic structure (physics) in the earth interior by jointing data of seismic wave kinematics and dynamics characteristics, we carry out the new experiment step by step, and the research mainly comprises of two parts: one is the reconstruction of P-wave vertical velocity and anisotropic structure(Thomsen parameter s and 8) in the transversely isotropic media with vertical symmetrical axis(VTI) by fixing geometrical structure, and the other is the simultaneous inversion of the reflector surface conformation and seismic anisotropic structure by jointing seismic reflection traveltimes and polarizations data. Simulated annealing method is used to the first research part, linear inversion based on BG theory and Simulated annealing are applied to the second one. All the research methods are checked by model experiments, then applied to the real data of the wide-angle seismic profile from Tunxi, Anhui Province, to Wenzhou, Zhejiang Province. The results are as following The inversion results based on jointing seismic PP-wave or PSV-wavereflection traveltimes and polarizations data are more close to real model than themodels based simply on one of the two data respectively. It is shown that the methodwe present here can effectively reconstruct the anisotropy attributes in the earth'sinterior when seismic reflector structure is fixed.The layer thickness, P-wave vertical velocity and Thomsen anisotropicparameters {s and 8) could be resolved simultaneously by jointing inversion ofseismic reflection traveltimes and polarizations with the linear inversion methodbased on BG theory.The image of the reflector structure, P-wave vertical velocity and theanisotropy parameters in the crust could be obtained from the wide-angle seismicprofile from Tunxi (in Anhui Province), to Wenzhou (in Zhejiang Province). Theresults reveal the difference of the reflector geometrical structure and physicalattributes in the crust between Yangtze block and Cathaysia block, and attempt tounderstand the characteristics of the crustal stress field in the areas.
Resumo:
The phase diagram of the dodecyl dimethyl ammonium hydroxyl propyl sulfonate(DDAHPS)/1-pentanol(C5H11OH)/water ternary system has been established. It contains two isotropic monophase regions (L-1 and L-2) and a liquid crystalline region (L.C.). The isotropic phase regions have been investigated by means of Raman spectroscopy and conductivity.
Resumo:
The longitudinal structure function (LSF) and the transverse structure function (TSF) in isotropic turbulence are calculated using a vortex model. The vortex model is composed of the Rankine and Burgers vortices which have the exponential distributions in the vortex Reynolds number and vortex radii. This model exhibits a power law in the inertial range and satisfies the minimal condition of isotropy that the second-order exponent of the LSF in the inertial range is equal to that of the TSF. Also observed are differences between longitudinal and transverse structure functions caused by intermittency. These differences are related to their scaling differences which have been previously observed in experiments and numerical simulations.
Resumo:
The time correlations of pressure modes in stationary isotropic turbulence are investigated under the Kraichnan and Tennekes "random sweeping" hypothesis. A simple model is obtained which predicts a universal form for the time correlations. It implies that the decorrelation process of pressure fluctuations in time is mainly dominated by the sweeping velocity, and the pressure correlations have the same decorrelation time scales as the velocity correlations. These results are verified using direct numerical simulations of isotropic turbulence at two moderate Reynolds numbers; the mode correlations collapse to the universal form when the time separations are scaled by wavenumber times the sweeping velocity, and the ratios of the correlation coefficients of pressure modes to those of velocity modes are approximately unity for the entire range of time separation. (c) 2008 American Institute of Physics.
Resumo:
It is shown that for the screened Coulomb potential and isotropic harmonic oscillator, there exists an infinite number of closed orbits for suitable angular momentum values. At the aphelion (perihelion) points of classical orbits, an extended Runge-Lenz vector for the screened Coulomb potential and an extended quadrupole tensor for the screened isotropic harmonic oscillator are still conserved. For the screened two-dimensional (2D) Coulomb potential and isotropic harmonic oscillator, the dynamical symmetries SO3 and SU(2) are still preserved at the aphelion (perihelion) points of classical orbits, respectively. For the screened 3D Coulomb potential, the dynamical symmetry SO4 is also preserved at the aphelion (perihelion) points of classical orbits. But for the screened 3D isotropic harmonic oscillator, the dynamical symmetry SU(2) is only preserved at the aphelion (perihelion) points of classical orbits in the eigencoordinate system. For the screened Coulomb potential and isotropic harmonic oscillator, only the energy (but not angular momentum) raising and lowering operators can be constructed from a factorization of the radial Schrodinger equation.
Resumo:
The recent application of large-eddy simulation (LES) to particle-laden turbulence requires that the LES with a subgrid scale (SGS) model could accurately predict particle distributions. Usually, a SGS particle model is used to recover the small-scale structures of velocity fields. In this study, we propose a rescaling technique to recover the effects of small-scale motions on the preferential concentration of inertial particles. The technique is used to simulate particle distribution in isotropic turbulence by LES and produce consistent results with direct numerical simulation (DNS). Key words: particle distribution, particle-laden turbulence, large-eddy simulation, subgrid scale model.