65 resultados para TRANSFER MODEL
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An optical communication scheme of 2-D pattern transfer based on imaging optics for submarine laser uplink communication (SLUC) is suggested. Unlike the methods aiming at avoiding neighboring crosstalk used in traditional multi-channel optical beam transferring, we make full use of the overlapping of each spreading beam other than controlling divergence effect of each beam to avoid interference noise. The apparent parameters have been introduced to simplify theoretical analysis of optical pattern transfer problem involving underwater condition, with the help of which the complex beam propagation inside two kinds of mediums can be easily reduced to brief beam transfer only inside air medium. In this paper, optical transmission path and receiver terminal optics geometry have been described in detail. The link range equation and system uplink performance analysis have also been given. At last, results of a proof-of-concept experiment indicate good feasibility of the proposed SLUC model. © 2007 Elsevier GmbH. All rights reserved.
Resumo:
Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The C-phycocyanin and the R-phycoerythrin were purified from the blue-green alga Spirulina platensis and red alga Polysiphonia urceolata respectively. Both sodium periodate and glutaraldehyde are effective coupling agents being capable of constructing the R-phycoerythrin-C-phycocyanin conjugate, which was also called phycobiliproteins energy transfer model. The two artificial conjugates constructed with different methods were purified by Sephadex G-200 chromatography respectively. Spectra analysis indicated that energy transfer occurred in the two conjugates. The conjugate with sodium periodate had the higher efficiency of energy transfer than that with glutaraldehyde conjugate.
Resumo:
Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boiloff gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.
Resumo:
In this paper, we demonstrated a dual-wavelength competitive output in Nd:Y3SC1.5Al3.5O12 ceramic disk laser. Different dual-wavelength output behaviors for Nd:YSAG and Nd:YAG ceramic disk laser were investigated and discussed. By applying the energy transfer model, we suggested the reasonable explanation for this new phenomenon as the disordered replacing of Al3+ ions by Sc3+ ions. The main advantage of the dual-wavelength ceramic laser is the possibility to serve as the seed source to generate Terahertz radiation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
测量了End-Hall离子源在不同条件下的离子束流密度,在不同离子束流密度下进行了心离子辅助沉积ZrO2薄膜的实验,研究了离子束流密度对薄膜折射率、晶相的影响.根据动量传递模型分析了离子束流密度对薄膜折射率的作用;根据热尖峰理论证明了一定条件下离子束流密度不会影响薄膜晶体结构。
Resumo:
The temperature dependences of the orange and blue emissions in 10, 4.5, and 3 nm ZnS:Mn nanoparticles were investigated. The orange emission is from the T-4(1)-(6)A(1) transition of Mn2+ ions and the blue emission is related to the donor-acceptor recombination in the ZnS host. With increasing temperature, the blue emission has a red-shift. On the other hand, the peak energy of the orange emission is only weakly dependent on temperature. The luminescence intensity of the orange emission decreases rapidly from 110 to 300 K for the 10 nm sample but increases obviously for the 3 nm sample, whereas the emission intensity is nearly, independent of temperature for the 4.5 nm sample. A thermally activated carrier-transfer model has been proposed to explain the observed abnormal temperature behaviour of the orange emission in ZnS:Mn nanoparticles.
Resumo:
Erbium-implanted silicones were treated by lamp-heating rapid thermal annealing (RTA). Two types of erbium-related photoluminescence spectra appear under different anneal temperatures. 750 degrees C annealing optimizes the luminescence intensity, which does not change with anneal time. Exciton-mediated energy transfer model in erbium-doped silicon was presented. The emission intensity is related to optical active erbium concentration, lifetime of excited Er3+ ion and spontaneous emission time. The thermal quenching of the erbium luminescence in Si is caused by thermal ionization of erbium-bound exciton complex and nonradiative energy backtransfer processes, which correspond to the activation energy of 6.6 meV and 47.4 meV respectively.
Resumo:
BACKGROUND: Thermodynamic studies on Ce(IV) extraction with primary amine N1923 demonstrate that primary amine N1923 is an excellent extractant for separation of Ce(IV) from Re(III). In order to clarify the mechanism of extraction and to optimize the parameters in practical extraction systems used in the rare earth industry, the extraction kinetics was investigated using a constant interfacial area cell with laminar flow in the present work.RESULTS: The data indicate that the rate constant (k(ao).) becomes constant when stirring speed exceeds 250 rpm. The apparent forward extraction rate is calculated to be 10(-1.70). The activation energy (E.) was calculated to be 20.5 kJ/mol from the slope of log kao against 1000/T. The minimum bulk concentration of the extractant necessary to saturate the interface (C-min) is lower than 10(-5) mol L-1.CONCLUSION: Studies of interfacial tension and the effects of stirring rate and specific interfacial area on the extraction rate show that the extraction rate is kinetically controlled, and a mass transfer model has been proposed. The rate equation has been obtained as: -d[Ce(IV)]/dt = 10(-1.70)[Ce(IV)] [(RNH3)(2)SO4](1.376). The rate-controlling step has been evaluated from analysis of the experimental results.
Resumo:
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.
Resumo:
The mechanism of hole charge transfer in DNA of various lengths and sequences is investigated based on a partially coherent tunneling theory (Zhang et al., J Chem Phys 117:4578, 2002), where the effects of phase-breaking in adenine-thymine and guanine-cytosine base pairs are treated on equal foot. This work aims at providing a self-consistent microscopic interpretation for rate experiments on various DNA systems. We will also clarify the condition under which the simple superexchange-mediated-hopping picture is valid, and make some comments on the further development of present theory.
Resumo:
A theoretical model of collisional quantum interference (CQI) is developed in a diatom-diatom system based on the first-order Born approximation of time-dependent perturbation theory and the multipolar interaction potential. The transition cross section is obtained. The relations between the differential and integral interference angles are discussed. The key factors on the determination of the differential and integral interference angles are obtained. The changing tendency of the interference angles with the experimental temperatures is obtained.