306 resultados para TOUGHENING MECHANISM
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The parameters which effect the cavitation strain of polymer blends toughened with a shear yield mechanism have been studied by analysis of the stress acted on the equatorial plane of dispersed-phase particles. As a result, the cavitation strain of polymer blends depends on the Young's modulus and the Poisson's ratio of the dispersed-phase particles and the matrix and also on the break stress of dispersed-phase particles. We tried to provide a criterion for selecting the materials used as dispersed-phase particles which can effectively enhance the toughness of polymer blends. (C) 1996 John Wiley & Sons, Inc.
Resumo:
An extended Goldman-Shen pulse sequence was used to observe indirectly the proton spin diffusion in the blends of polystyrene (PS) with poly(2,6-dimethyl-1,4-phenylene oxides) (PPO). The results indicate that the average distance between PS and PPO is less than 5 angstrom in the intimately mixed phase, but there are heterogeneous domains on a 100-angstrom scale. The data of spin relaxation of carbons, T1(C), for homopolymers and their blends suggest that there is a strong pi-pi electron conjugation interaction between the aromatic rings of PS and those of PPO, while the aromatic rings of PPO drive the aromatic rings of PS to move cooperatively. It is the cooperative motion that markedly improves the impact strength of PS.
Resumo:
Based on the transmission electron micrographs of nacre, the existence of mineral bridges in the organic matrix interface is confirmed. It is proposed that the microarchitecture of nacre should be considered as a "brick-bridge-mortar" (BBM) arrangement rather than traditional "brick and mortar" (BM) one. Experiments and analyses indicate that the mineral bridges effectively affect the strength and toughness of the interfaces in nacre. Comparison with a laminated composite with BM structure, SiC/BN, shows that the pattern of the crack extension and the toughening mechanism of the two materials are different. This reveals that the mineral bridges play a key role in the toughening mechanisms of nacre, which gives a conceptual guidance in material synthesis.
Resumo:
Core-shell polybutadiene-graft-polystyrene (PB-g-PS) rubber particles with different ratios of polybutadiene to polystyrene were prepared by emulsion polymerization through grafting styrene onto polybutadiene latex. The weight ratio of polybutadiene to polystyrene ranged from 50/50 to 90/10. These core-shell rubber particles were then blended with polystyrene to prepare PS/PB-g-PS blends with a constant rubber content of 20 wt%. PB-g-PS particles with a lower PB/PS ratio (<= 570/30) form a homogeneous dispersion in the polystyrene matrix, and the Izod notched impact strength of these blends is higher than that of commercial high-impact polystyrene (HIPS). It is generally accepted that polystyrene can only be toughened effectively by 1-3 mu m rubber particles through a toughening mechanism of multiple crazings. However, the experimental results show that polystyrene can actually be toughened by monodisperse sub-micrometer rubber particles. Scanning electron micrographs of the fracture surface and stress-whitening zone of blends with a PB/PS ratio of 70/30 in PB-g-PS copolymer reveal a novel toughening mechanism of modified polystyrene, which may be shear yielding of the matrix, promoted by cavitation.
Resumo:
The microstructure and mechanical properties of beta-nucleated iPP before and after being annealed at different temperatures (90-160 degrees C) have been analyzed, Annealing induced different degrees of variation in fracture toughness of beta-nucleated iPP samples. namely, slight enhancement at relatively low annealing temperatures (< 110 degrees C) and great improvement at moderate temperatures (120-130 degrees C), whereas dramatic deterioration at relatively high temperatures ( > 140 degrees C) has been observed. The variation of fracture toughness of beta-nucleated iPP is observed to be dependent on the content of beta-NA. Experiments, including scanning electronic microscope (SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA), are performed to study the variations of microstructures as well as the toughening mechanism of the beta-nucleated iPP after being annealed.
Resumo:
La2Zr2O7 (LZ) is a promising thermal barrier coating material for the high-temperature applications, which could be significantly toughened by the YAG nanopowder incorporated into the matrix. The composites of xYAG/(1-x)LZ (Y=10, 15, 20 vol. %, LZ-x-YAG) were densified by means of high-pressure sintering (HPS) under a pressure of 4.5 GPa at 1650 degrees C for 5 min, by which a high-relative density above 93% could be obtained. The morphologies of the fractured surfaces were investigated by the scanning electron microscope, and the fracture toughness and Vicker's-hardness of the composites were evaluated by the microindentation. The grain size of the LZ matrix drops significantly with the addition of YAG nanoparticles and the fracture type changes from the intergranular to a mixture type of the transgranular and intergranular in the nanocomposites. The LZ-20-YAG nanocomposite has a fracture toughness of 1.93 MPa m(1/2), which is obviously higher than that of the pure LZ (1.57 MPa m(1/2)), and the toughening mechanism is discussed in this paper.
Resumo:
Polycarbonate (PC) and a core-shell latex polymer composed of poly(butyl acrylate) and poly(methyl methacrylate) (PBA-cs-PMMA) as core and shell, respectively, were mixed using a Brabender-like apparatus under different conditions. The mechanical properties, the morphology and the processability of the blends were investigated. Because of the good compatibility of PC and PMMA, even dispersion of PBA-cs-PMMA in PC matrix and good adhesion between the components have been achieved. PBA-cs-PMMA is thus a very good impact modifier for PC. The toughening mechanism is both cavitation and shear yielding, as indicated by SEM observation. (C) 1997 Elsevier Science Ltd.
Resumo:
In brittle composites, such as whisker reinforced ceramics, the sliding of reinforcing fibers against the frictional resistance of matrix is of a pseudo-plastic deformation mechanism. High aspect-ratio whiskers possess larger pseudo-plastic deformation ability but are usually sparse, while, low aspect-ratio ones were distributed widely in the matrix and show low pseudo-plastic deformation ability (engagement effect), also. A comparative investigation was carried out in present study based on a multi-scale network model. The results indicate that the effect of low aspect-ratio whiskers is of most importance. Improving the engagement coefficient by raising the compactness of material seems a more practical way for optimization of discontinuous fiber-reinforced brittle composites in the present technological condition.
Resumo:
The effect of the elastomer stiffness on brittle-tough transition in elastomer toughening thermoplastics was quantitatively studied. A correlation between brittle-tough transition temperature and the elastomer stiffness was obtained. The calculation from this correlation showed that the brittle-tough transition temperature (T-bt) Of elastomer toughening thermoplastics slowly increased up to one tenth of the modulus of matrix, thereafter it increased rapidly with increasing the modulus of elastomer. The results indicated that the modulus of the elastomer must be one-tenth or less of that of the matrix in order to be effective at low temperature. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The material response and failure mechanism of unidirectional metal matrix composite under impulsive shear loading are investigated in this paper. Both experimental and analytical studies were performed. The shear strength of unidirectional C-f/A356.0 composite and A356.0 aluminum alloy at high strain rate were measured with a modified split Hopkinson torsional bar technique. The results indicated that the carbon fibers did not improve the shear strength of aluminum matrix if the fiber orientation aligned with the shear loading axis. The microscopic inspection of the fractured surface showed a multi-scale zigzag feature which implied a complicated shear failure mechanism in the composite. In addition to testing, the micromechanical stress field in the composite was analyzed by the generalized Eshelby equivalent method (GEEM). The influence of cracking in matrix on the micromechanical stress field was investigated as well. The results showed that the stress distribution in the composite is quite nonhomogeneous and very high shear stress concentrations are found in some regions in the matrix. The high shear stress concentration in the matrix induces tensile cracking at 45 degrees to the shear direction. This in turn aggravates the stress concentration at the fiber/matrix interface and finally leads to a catastrophic failure in the composite. From the correlation between the analysis and experimental results, the shear failure mechanism of unidirectional C-f/A356.0 composite can be elucidated qualitatively.
Resumo:
A Ni-B coating was prepared with EN using potassium borohydride reducing agent. The as-plated micro-structure of the coating was confirmed from XRD to be a mixture of amorphous and supersaturated solid solution. Three kinds of phase transformation were observed from the DSC curve. Different from the previous works, the formation of Ni4B3 and Ni2B was found during some transformation processes. The key factors which influence the variation of micro-hardness and micro-structure in deposits are the formation, the size and amount of Ni3B, Ni4B3 and Ni2B. Aging of the deposits treated under some heat treatment conditions occurred at room temperature. Changes of the micro-hardness indicated aging phenomena evidently. the natural aging phenomena are concerned with various kinds of decomposition of borides, especially with Ni4B3 phase. The extent of natural aging depends on the formation and the quantity of Ni(4)B3 and Ni2B.
Resumo:
The flow theory of mechanism-based strain gradient (MSG) plasticity is established in this paper following the same multiscale, hierarchical framework for the deformation theory of MSG plasticity in order to connect with the Taylor model in dislocation mechanics. We have used the flow theory of MSG plasticity to study micro-indentation hardness experiments. The difference between deformation and flow theories is vanishingly small, and both agree well with experimental hardness data. We have also used the flow theory of MSG plasticity to investigate stress fields around a stationary mode-I crack tip as well as around a steady state, quasi-statically growing crack tip. At a distance to crack tip much larger than dislocation spacings such that continuum plasticity still applies, the stress level around a stationary crack tip in MSG plasticity is significantly higher than that in classical plasticity. The same conclusion is also established for a steady state, quasi-statically growing crack tip, though only the flow theory can be used because of unloading during crack propagation. This significant stress increase due to strain gradient effect provides a means to explain the experimentally observed cleavage fracture in ductile materials [J. Mater. Res. 9 (1994) 1734, Scripta Metall. Mater. 31 (1994) 1037; Interface Sci. 3(1996) 169].
Resumo:
In this paper, an accurate formula for calculating the thermal residual stress field in a particle-reinforced composite are presented. Numerical examples are given to show r-variations of the thermal residual stresses. The increase in fracture toughness of matrix predicted by the thermal residual stress field is compared well with the experimentally measured increase.